Abstract:
A system for enabling a driver of a vehicle to visibly observe objects located in a blind spot includes, but is not limited to, a rear view viewing device that is mounted to the vehicle and configured to be electronically adjustable. The system further includes a sensor that is associated with the vehicle and that is configured to detect a location of an object with respect to the vehicle and to generate a first signal indicative of the location of the object. The system further includes a processor that is communicatively coupled with the sensor and that is operatively coupled with the rear view viewing device. The processor is configured to obtain the first signal from the sensor and to command the rear view viewing device to adjust such that the object is visibly observable to the driver when the processor receives the first signal.
Abstract:
A vehicle steering system includes an automatic steering control unit configured to control the vehicle steering system when in an automatic operational state and a driver intervention unit is configured to determine driver intervention during the automatic operational state. The driver intervention unit comprising a decision software module configured to determine driver intervention.
Abstract:
Systems and methods for detecting road bank and determining road bank angle include determining a road bank angle as a function of difference in slip angle where the difference in slip angle is a function of difference in course angle and difference in yaw angle.
Abstract:
A system and method for estimating vehicle lateral velocity that defines a relationship between front and rear axle lateral forces and front and rear axle side-slip angles. The method includes providing measurements of vehicle yaw-rate, lateral acceleration, longitudinal speed, and steering angle. The method also includes using these measurements to provide a measurement of the front and rear axle forces. The method calculates a front axle lateral velocity and a rear axle lateral velocity, and calculates a front axle side-slip angle based on the rear axle lateral velocity and a rear axle side-slip angle based on the front axle lateral velocity. The method then estimates front and rear axle forces, and selects a virtual lateral velocity that minimizes an error between the estimated and measured lateral axle forces. The method then provides an estimated vehicle lateral velocity using the selected virtual lateral velocity.
Abstract:
A system and method for estimating vehicle lateral velocity and surface coefficient of friction using front and rear axle lateral force versus side-slip angle tables and sensor measurements. The sensor measurements include lateral acceleration, yaw-rate, longitudinal speed and steering angle of the vehicle. The method includes calculating front and rear axle lateral forces and front and rear side-slip angles on the axles of the vehicle. The method also includes identifying two equations from the calculated lateral forces and the vehicle measurements. The method provides tables that identify a relationship between the calculated front and rear axle lateral forces and the front and rear side-slip angles, and determines the vehicle lateral velocity and surface coefficient of friction from the tables.
Abstract:
A system and method for estimating vehicle lateral velocity. The method uses a kinematic estimator constructed as a closed-loop Leunberger observer. The kinematic estimator is based on a kinematic relationship between lateral acceleration measurement and rate of change of lateral velocity. The method provides measurement updates based on virtual lateral velocity measurements from front and rear axle lateral force versus axle side-slip angle tables using the lateral acceleration, yaw-rate, longitudinal speed, and steering angle measurements. The method calculates front and rear axle lateral forces from the lateral acceleration and yaw-rate measurements. The method estimates front and rear axle side-slip angles from the calculated front and rear axle lateral forces using the tables. The method calculates multiple virtual lateral velocities from the front and rear side-slip angles and selects one of the virtual lateral velocities that minimizes an error between a measured force and an estimated force as the lateral velocity.
Abstract:
An analytical methodology for the specification of progressive optimal compression damping of a suspension system to negotiate severe events, yet provides very acceptable ride quality and handling during routine events. In a broad aspect, the method provides a progressive optimal unconstrained damping response of the wheel assembly with respect to the body. In a preferred aspect, the method provides a progressive optimal constrained damping response of the wheel assembly with respect to the body, wherein below a predetermined velocity a conventional damper force is retained.
Abstract:
A system and method is provided for determining a lateral velocity and a longitudinal velocity of a vehicle equipped. The vehicle includes only one antenna for a GPS receiver and a magnetic compass. A magnitude of a velocity vector of the vehicle is determined. A course angle with respect to a fixed reference using the single antenna GPS receiver is determined. A yaw angle of the vehicle is measured with respect to the fixed reference using a magnetic compass. A side slip angle is calculated as a function of the course angle and the yaw angle. The lateral velocity and longitudinal velocity is determined as a function of the magnitude of the velocity vector and the side slip angle.
Abstract:
A method of stabilizing a vehicle is provided. The vehicle is travelling at a forward speed and a lateral speed, and comprises a lateral acceleration sensor, a yaw sensor adapted to detect an actual yaw rate of the vehicle around a central axis, a steering mechanism adapted to steer the vehicle by a steered yaw rate, and an electronic stability control system. The method comprises determining the forward speed of the vehicle with the electronic stability control system, determining a yaw error rate based upon a difference between the actual yaw rate of the vehicle and the steered yaw rate, determining the vehicle is in an unstable condition by comparing the yaw error rate to a first predetermined yaw rate, computing a calculated lateral speed based on acceleration data from the lateral acceleration sensor, the forward speed, and the actual yaw rate in response to determining the vehicle is in the unstable condition, calculating a correction factor based on the calculated lateral speed of the vehicle and the forward speed of the vehicle, and adjusting operation of the electronic stability control system by the correction factor.
Abstract:
A system for providing vehicle roll control that controls the friction-force of dampers provided at the wheels of the vehicle. The system includes a lateral acceleration sensor for determining the lateral acceleration of the vehicle, a steering angle sensor for determining the steering angle of the vehicle and a speed sensor for determining the speed of the vehicle. The system calculates a current control signal for one or more of the dampers based on the lateral acceleration and/or the steering angle, and uses one or both of the current control signals to control the friction-force of the inside, outside or both of the dampers.