摘要:
A tubeless fiber optic cable is disclosed, including at least one optical fiber extending in a longitudinal direction, and an outer jacket extending in the longitudinal direction so as to surround the optical fiber. The outer jacket has a cross-section defining an inner surface and an outer surface. At least one strength member extends in the longitudinal direction along the outer jacket and is disposed so that a portion thereof protrudes from the inner surface of the outer jacket, so that when a ripcord is pulled from the outer jacket separation of the outer jacket occurs, thereby allowing access to a cavity containing the optical fiber. In another embodiment, the ripcord protrudes from the inner surface of the outer jacket.
摘要:
A fiber optic cable (10) includes a tube section (20) and an sheath section (40). Between tube and sheath sections (20,40) is a series of general interstices (S), each general interstice (S) comprises a respective set of sub-interstices (S1,S2,S3). Each general interstice (S) comprises a respective interstitial assembly (30). Each interstitial assembly (30) provides crush strength resistance and water blocking features to fiber optic cable (10).
摘要:
A fiber optic cable having strength assemblies (30) adjacent a tube having at least one optical fiber therein, at least one of the strength assemblies including a strength member for imparting crush resistance to the cable. The strength member is generally coupled to a first jacket, and may be surrounded by a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. The arrangement of the cable components and strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distributes the stress for preventing crush induced attenuation in the optical fibers.
摘要:
A fiber optic cable having strength assemblies (30) adjacent a tube for imparting crush resistance to the cable, at least one of the strength assemblies including a strength member in contact with a tube having at least one optical fiber therein. The strength member is coupled to a first jacket, and may be surrounded a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. Tight coupling and minimized gaps between the cable components in strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distribute the stress for preventing crush induced attenuation in the optical fibers.
摘要:
A fiber optic cable (10) having a core tube (14) with a stack of optical fiber ribbons (12) therein, a jacket (20), and strength sections (30). Jacket (20) includes a non-uniform profile with close profile sections (22) and extended profile sections (26). Strength sections (30) comprise extended profile sections (26), dielectric strength rods (32), and ripcords (34) disposed between the strength rods. When it is desired to prepare fiber optic cable (10) for a cable pulling operation, portions of extended profile sections (26) are removed thereby exposing strength rods (32) and grip surfaces (22a) for receiving a pulling-grip (40). The compact size, flexibility, and light-weight construction of fiber optic cable (10) makes it a craft-friendly cable which is easy to route through cable passageways during the cable pulling operation.
摘要:
A fiber optic cable (10) having a tube assembly (20) therein. Tube assembly (20) includes an optical fiber group (22) in a tube (21). Optical fiber group (22) comprises a medial optical fiber subgroup (23) and lateral optical fiber subgroups (24a,24b;25a,25b;26a,26b) adjacent thereto. Subgroups (24a,24b;25a,25b;26a,26b) define a step-like profile for maximizing optical fiber packing density of tube assembly (20) and/or defining a high fiber count cable (10). In an exemplary embodiment, fiber optic cable (10) can include strength assemblies (30) on opposing sides of tube assembly (20) for defining a preferential bend plane in fiber optic cable (10).
摘要:
Fiber optic assemblies include subunit cables wrapped in binders. The assemblies have small cross sections and low bend radii while maintaining acceptable attenuation losses. SZ stranding of the subunit cables allows ease of access to the individual cables during installation.
摘要:
A system for monitoring an optical cable includes a cable having monitor fibers solely for monitoring cable status. The monitor fibers may be fibers selected from optical fibers having a higher mechanical sensitivity to mechanical stresses than other fibers in the cable, which may attenuate earlier than the other fibers in the event of cable degradation. The monitor fibers may be in communication with a transmitter and receiver, for transmitting and receiving a monitor signal. The receiver may be in communication with an alarm, the alarm being operative to send an alert signal when an increased attenuation is detected from the monitor signal, the increased attenuation being indicative of the status of the optical cable.
摘要:
A system for monitoring an optical cable includes a cable having monitor fibers solely for monitoring cable status. The monitor fibers may be fibers selected from optical fibers having a higher mechanical sensitivity to mechanical stresses than other fibers in the cable, which may attenuate earlier than the other fibers in the event of cable degradation. The monitor fibers may be in communication with a transmitter and receiver, for transmitting and receiving a monitor signal. The receiver may be in communication with an alarm, the alarm being operative to send an alert signal when an increased attenuation is detected from the monitor signal, the increased attenuation being indicative of the status of the optical cable.
摘要:
A ruggedized cable has an inner and an outer jacket. The cable also includes two layers of aramid strength elements for tensile strength. The cable can be pulled through various environments due to the jacketing and strength elements. The outer jacket and strength elements can be stripped away at a transition point, and secured at an entry point of a housing of an FDT, ONT, etc. The remaining inner cable element is then routed through the hardware housing and terminated.