摘要:
A tubeless fiber optic cable is disclosed, including at least one optical fiber extending in a longitudinal direction, and an outer jacket extending in the longitudinal direction so as to surround the optical fiber. The outer jacket has a cross-section defining an inner surface and an outer surface. At least one strength member extends in the longitudinal direction along the outer jacket and is disposed so that a portion thereof protrudes from the inner surface of the outer jacket, so that when a ripcord is pulled from the outer jacket separation of the outer jacket occurs, thereby allowing access to a cavity containing the optical fiber. In another embodiment, the ripcord protrudes from the inner surface of the outer jacket.
摘要:
A fiber optic cable having strength assemblies (30) adjacent a tube having at least one optical fiber therein, at least one of the strength assemblies including a strength member for imparting crush resistance to the cable. The strength member is generally coupled to a first jacket, and may be surrounded by a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. The arrangement of the cable components and strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distributes the stress for preventing crush induced attenuation in the optical fibers.
摘要:
A fiber optic cable having strength assemblies (30) adjacent a tube for imparting crush resistance to the cable, at least one of the strength assemblies including a strength member in contact with a tube having at least one optical fiber therein. The strength member is coupled to a first jacket, and may be surrounded a single jacket, or by an armor tape and a second jacket. The strength member may be disposed in a recess of the tube. When crush loads are applied to the fiber optic cable, the stresses created in the cable are advantageously distributed by strength assemblies (30) whereby stress concentrations and undue deflection of the cable in response to the crush loads are avoided. Tight coupling and minimized gaps between the cable components in strength assemblies (30) inhibits slippage and/or warping of the components under stress, and thereby evenly distribute the stress for preventing crush induced attenuation in the optical fibers.
摘要:
A fiber optic cable (10) includes a tube section (20) and an sheath section (40). Between tube and sheath sections (20,40) is a series of general interstices (S), each general interstice (S) comprises a respective set of sub-interstices (S1,S2,S3). Each general interstice (S) comprises a respective interstitial assembly (30). Each interstitial assembly (30) provides crush strength resistance and water blocking features to fiber optic cable (10).
摘要:
A fiber optic cable (10) having a core tube (14) with a stack of optical fiber ribbons (12) therein, a jacket (20), and strength sections (30). Jacket (20) includes a non-uniform profile with close profile sections (22) and extended profile sections (26). Strength sections (30) comprise extended profile sections (26), dielectric strength rods (32), and ripcords (34) disposed between the strength rods. When it is desired to prepare fiber optic cable (10) for a cable pulling operation, portions of extended profile sections (26) are removed thereby exposing strength rods (32) and grip surfaces (22a) for receiving a pulling-grip (40). The compact size, flexibility, and light-weight construction of fiber optic cable (10) makes it a craft-friendly cable which is easy to route through cable passageways during the cable pulling operation.
摘要:
A fiber optic cable including at least one optical fiber and at least one dry insert disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The dry insert has a first thickness and a second thickness located at different longitudinal locations along the dry insert, where the first thickness is greater than the second thickness. The region of the cable having the first thickness of the dry insert provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the optical fiber(s) have a predetermined level of coupling to the cable jacket that is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable.
摘要:
A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle.
摘要:
A fiber optic cable including at least one optical fiber and at least one dry insert disposed within a cavity of a cable jacket and methods for manufacturing the same are disclosed. The dry insert has a first thickness and a second thickness located at different longitudinal locations along the dry insert, where the first thickness is greater than the second thickness. The region of the cable having the first thickness of the dry insert provides and/or increases the coupling level of the at least one optical fiber to the cable jacket. In further embodiments, the optical fiber(s) have a predetermined level of coupling to the cable jacket that is about 0.1625 Newtons or more per optical fiber for a thirty meter length of fiber optic cable.
摘要:
A self-supporting fiber optic cable includes messenger and carrier sections and at least one interconnecting web. The messenger section includes at least one support member and a protective jacket. The carrier section includes a tube, at least one optical fiber disposed within the tube, and a jacket. In order to protect the optical fiber from tensile forces and to facilitate mid-span access, the carrier section can have an overlength. In order to accommodate the overlength, the web can include a plurality of intermittent webs that permit the carrier section to bend. The carrier section can also include at least one strength member. The at least one strength member is preferably positioned in a reference plane that also generally extends through the messenger section, the carrier section and the web. By appropriately positioning the strength members relative to the tube, the carrier section preferentially bends in a plane generally orthogonally disposed to the reference plane. As a result, the fiber optic cable not only accommodates the overlength of the carrier section, but also facilitates the winding of the fiber optic cable upon a reel for shipment and storage.
摘要:
A method for the use of contractile pulling grips for cables in which a portion of the outer jacket of the cable is removed and the contractile grip is applied over one or more cable strength elements.