摘要:
Embodiments of a processor architecture utilizing multi-bank implementation of physical register mapping table are provided. A register renaming system to correlate architectural registers to physical registers includes a physical register mapping table and a renaming logic. The physical register mapping table has a plurality of entries each indicative of a state of a respective physical register. The mapping table has a plurality of non-overlapping sections each of which having respective entries of the mapping table. The renaming logic is coupled to search a number of the sections of the mapping table in parallel to identify entries that indicate the respective physical registers have a first state. The renaming logic selectively correlates each of a plurality of architectural registers to a respective physical register identified as being in the first state. Methods of utilizing the multi-bank implementation of physical register mapping table are also provided.
摘要:
In a network-on-chip (NoC) system, multiple data messages may be transferred among modules of the system. Power consumption due to the transfer of the messages may affect a cost and overall performance of the system. A described technique provides a way to reduce a volume of data transferred in the NoC system by exploiting redundancy of data messages. Thus, if a data message to be sent from a source in the NoC includes so-called “zero” bytes that are bytes including only bits set to “0,” such zero bytes may not be transmitted in the NoC. Information on whether each byte of the data message is a zero byte may be recorded in a storage such as a data structure. This information, together with non-zero bytes of the data message, may form a compressed version of the data message. The information may then be used to uncompress the compressed data message at a destination.
摘要:
Embodiments of a processor architecture utilizing multi-bank implementation of physical register mapping table are provided. A register renaming system to correlate architectural registers to physical registers includes a physical register mapping table and a renaming logic. The physical register mapping table has a plurality of entries each indicative of a state of a respective physical register. The mapping table has a plurality of non-overlapping sections each of which having respective entries of the mapping table. The renaming logic is coupled to search a number of the sections of the mapping table in parallel to identify entries that indicate the respective physical registers have a first state. The renaming logic selectively correlates each of a plurality of architectural registers to a respective physical register identified as being in the first state. Methods of utilizing the multi-bank implementation of physical register mapping table are also provided.
摘要:
Embodiments of a processor architecture efficiently implement shadow registers in hardware. A register system in a processor includes a set of physical data registers coupled to register renaming logic. The register renaming logic stores data in and retrieves data from the set of physical registers when the processor is in a first processor state. The register renaming logic identifies ones of the set of physical registers that have a first operational state as a first group of registers and identifies the remaining ones of the set of physical registers as a second group of registers in response to an indication that the processor is to enter a second processor state from the first processor state. The register renaming logic stores data in and retrieves data from the second group of registers but not the first group of registers when the processor is in the second processor state.
摘要:
An embodiment comprises and apparatus having an image capture device with an image axis and a gyroscope operable to indicate the orientation of the image axis. An embodiment of a capsule endoscopy system comprises an imaging capsule and an external unit. The imaging capsule may comprise an image capture device having an image axis and a gyroscope operable to indicate the orientation of the image axis. The external unit may comprise a gyroscope operable to indicate an orientation of a subject and a harness wearable by a subject and operable to align the gyroscope with the subject. The imaging capsule may send and image to an external unit for processing and display, and the external unit may provide for calculation of the image-axis orientation relative to the body.
摘要:
Embodiments of a processor architecture efficiently implement shadow registers in hardware. A register system in a processor includes a set of physical data registers coupled to register renaming logic. The register renaming logic stores data in and retrieves data from the set of physical registers when the processor is in a first processor state. The register renaming logic identifies ones of the set of physical registers that have a first operational state as a first group of registers and identifies the remaining ones of the set of physical registers as a second group of registers in response to an indication that the processor is to enter a second processor state from the first processor state. The register renaming logic stores data in and retrieves data from the second group of registers but not the first group of registers when the processor is in the second processor state.