Abstract:
A motion control system for controlling an image projected from an underwater projection system in a water feature includes a chassis, a mirror support coupled to the chassis, a mirror member on the mirror support, a first drive member, and a second drive member. The mirror member is configured to reflect the image projected from the underwater projection system in the water feature. The first drive member is coupled to the chassis and configured to rotate the mirror support relative to the chassis about a first axis to move the reflected image in the water feature. The second drive member is coupled to the chassis and a fixed mount and is configured to rotate the chassis and the mirror support about a second axis to move the reflected image in the water feature.
Abstract:
In some embodiments of the disclosed subject matter, systems and methods for controlling aquatic lighting using power line communication. In some embodiments, the systems include: a first power line modem coupled to an AC power line and a LAN; a user interface configured to: receive user input specifying a lighting, selection; and transmit lighting data representing the lighting selection to the first power line modem via the LAN; and a lighting controller that receives power via the AC power line, comprising: a light driver circuit coupled to a light source; a second power line modem coupled to the AC power line, the second power line modem receives the lighting data over the AC power line; and a processor configured to: receive lighting data from the second power line modem; and cause the light driver circuit to drive the light source to present the lighting selection.
Abstract:
In some embodiments of the disclosed subject matter, systems and methods for controlling aquatic lighting using power line communication are disclosed. In some embodiments, the system includes a lighting controller configured to receive power via an AC power line, the lighting controller comprising a light driver circuit configured to be coupled to at least one light source, a first power line modem configured to be connected to a local area network via a second powerline modem and the AC power line, and a processor that is configured to receive, from a user interface via the first power line modem, lighting data corresponding to a lighting selection specified by user input received by the user interface and cause the light driver circuit to drive the at least one light source to present the lighting selection based on the lighting data.
Abstract:
In some embodiments of the disclosed subject matter, systems and methods for controlling aquatic lighting using power line communication are disclosed. In some embodiments, the system includes a lighting controller configured to receive power via an AC power line, the lighting controller comprising a light driver circuit configured to be coupled to at least one light source, a first power line modem configured to be connected to a local area network via a second powerline modem and the AC power line, and a processor that is configured to receive, from a user interface via the first power line modem, lighting data corresponding to a lighting selection specified by user input received by the user interface and cause the light driver circuit to drive the at least one light source to present the lighting selection based on the lighting data.
Abstract:
A motion control system for controlling an image projected from an underwater projection system in a water feature includes a chassis, a mirror support coupled to the chassis, a mirror member on the mirror support, a first drive member, and a second drive member. The mirror member is configured to reflect the image projected from the underwater projection system in the water feature. The first drive member is coupled to the chassis and configured to rotate the mirror support relative to the chassis about a first axis to move the reflected image in the water feature. The second drive member is coupled to the chassis and a fixed mount and is configured to rotate the chassis and the mirror support about a second axis to move the reflected image in the water feature.
Abstract:
Some embodiments provide a motion control system controlling an image projected from an underwater projection system in a water feature, pool, or spa. The system includes a rotatable base and a mirror support member hingedly coupled to the rotatable base. A first motor is coupled to the rotatable base and is configured to rotate the mirror support member in a first plane. A second motor is coupled to the rotatable base and a fixed mount, wherein the second motor is configured to rotate the rotatable base relative to the fixed mount thereby rotating the mirror support member in a second plane.
Abstract:
Some embodiments provide a motion control system controlling an image projected from an underwater projection system in a water feature, pool, or spa. The system includes a rotatable base and a mirror support member hingedly coupled to the rotatable base. A first motor is coupled to the rotatable base and is configured to rotate the mirror support member in a first plane. A second motor is coupled to the rotatable base and a fixed mount, wherein the second motor is configured to rotate the rotatable base relative to the fixed mount thereby rotating the mirror support member in a second plane.
Abstract:
In some embodiments of the disclosed subject matter, systems and methods for controlling aquatic lighting using power line communication. In some embodiments, the systems include: a first power line modem coupled to an AC power line and a LAN; a user interface configured to: receive user input specifying a lighting, selection; and transmit lighting data representing the lighting selection to the first power line modem via the LAN; and a lighting controller that receives power via the AC power line, comprising: a light driver circuit coupled to a light source; a second power line modem coupled to the AC power line, the second power line modem receives the lighting data over the AC power line; and a processor configured to: receive lighting data from the second power line modem; and cause the light driver circuit to drive the light source to present the lighting selection.
Abstract:
A rotary motion controller controlling the motion of a mirror in a projection system is described having a mounting element coupled to a support member. A two-axis coupling is provided with at least two input shafts coupled to two drive mechanisms. A channeled portion is provided in a second of the two input shafts through which the support member extends there through and is guided thereby and where the at least one support member is coupled to the first input shafts via an input coupling coupled to and driving the support member and a control input controlling the position of the at least two input shafts. A method of controlling a mirror in an underwater projection system is also provided along with a method of operating a controller for an underwater projection system and a further embodiment for providing movement of a mirror in an underwater projector.
Abstract:
A rotary motion controller controlling the motion of a mirror in a projection system is described having a mounting element coupled to a support member. A two-axis coupling is provided with at least two input shafts coupled to two drive mechanisms. A channeled portion is provided in a second of the two input shafts through which the support member extends there through and is guided thereby and where the at least one support member is coupled to the first input shafts via an input coupling coupled to and driving the support member and a control input controlling the position of the at least two input shafts. A method of controlling a mirror in an underwater projection system is also provided along with a method of operating a controller for an underwater projection system and a further embodiment for providing movement of a mirror in an underwater projector.