Abstract:
A motion control system for controlling an image projected from an underwater projection system in a water feature includes a chassis, a mirror support coupled to the chassis, a mirror member on the mirror support, a first drive member, and a second drive member. The mirror member is configured to reflect the image projected from the underwater projection system in the water feature. The first drive member is coupled to the chassis and configured to rotate the mirror support relative to the chassis about a first axis to move the reflected image in the water feature. The second drive member is coupled to the chassis and a fixed mount and is configured to rotate the chassis and the mirror support about a second axis to move the reflected image in the water feature.
Abstract:
An underwater image projection system submerged in a body of water and projecting an image within the body of water. The system includes a submerged projection element, a light source steering device, a user interface, and a controller. The submerged projecting element includes a projecting light source that projects an image within the body of water. The light source steering device directs light from the projecting light source. The user interface receives data input from a user including at least one of an input of the image and instructions for displaying the image. The controller retrieves the data input from the user interface, accesses image data corresponding to the image, and controls the projecting light source and the light source steering device to project the image onto a target surface within the body of water based on the data input from the user interface.
Abstract:
An underwater projection system includes a controller designed to generate a map based on the boundary of a projection area, receive image content, and generate a control output based on the image content and the map. A projector is in communication with the controller to project the control output through the fluid onto the projection area.
Abstract:
A water level detection system in a pool, spa, fountain or water feature, the water level detection system being provided with a tap line coupled to a plumbing line on a suction or supply side of a filtration system and admitting water from the pool, spa, fountain or water feature such that the change in level of the water in the tap line corresponds to a change in level of the water in the pool, spa, fountain or water feature. A sensing module has at least one sensor for detecting the height of a column of water or the pressure of a column of air in the water tap line. A controller is coupled to the sensing module and adapted to collect the data from the sensors that detect changes in the level of the water level of the pool, spa, fountain or water feature, communicate the detection of such a change, and report such a change to initiate addition or removal of water from the pool, spa, fountain or water feature body of water to adjust the water level in the body of water to a set point.
Abstract:
A pH balancing solution dispenser having an upper body portion and a lower dispenser body portion. An interior support portion is provided with a dispensing grid and an at least one piercing mechanism thereon. A dispenser lid and an at least one dispensing mechanism are provided wherein a container of pH balancing solution is placed within the upper body portion and situated in communication with the piercing mechanism. The container is pierced and opened and the pH balancing solution flows from the container through the dispensing grid and is stored for distribution by the at least one dispensing mechanism. A unit controller can be provided to meter a dose of pH solution when instructed by the pH balancing solution dispenser to balance the pH of the body of water based on the estimation made by the unit controller using the measured operational time.
Abstract:
A motion control system for controlling an image projected from an underwater projection system in a water feature includes a chassis, a mirror support coupled to the chassis, a mirror member on the mirror support, a first drive member, and a second drive member. The mirror member is configured to reflect the image projected from the underwater projection system in the water feature. The first drive member is coupled to the chassis and configured to rotate the mirror support relative to the chassis about a first axis to move the reflected image in the water feature. The second drive member is coupled to the chassis and a fixed mount and is configured to rotate the chassis and the mirror support about a second axis to move the reflected image in the water feature.
Abstract:
An installation device for connecting a pool or spa device to a local area network comprises at least one memory device configured to store a web browser application, at least one processor configured to execute the web browser application, a server configured to generate a configuration web page through execution of the web browser application, and at least one input interface configured to receive user inputs including configuration information. The installation device is configured to connect to a host device and to display the configuration web page based on the host device detecting a connection between the installation device and the wireless access point or wireless router through the host device. The web browser application is operable to receive the configuration information through the web page and the installation device is configured to send the configuration information to the wireless access point or wireless router through the host device.
Abstract:
Some embodiments provide a motion control system controlling an image projected from an underwater projection system in a water feature, pool, or spa. The system includes a rotatable base and a mirror support member hingedly coupled to the rotatable base. A first motor is coupled to the rotatable base and is configured to rotate the mirror support member in a first plane. A second motor is coupled to the rotatable base and a fixed mount, wherein the second motor is configured to rotate the rotatable base relative to the fixed mount thereby rotating the mirror support member in a second plane.
Abstract:
Some embodiments provide a motion control system controlling an image projected from an underwater projection system in a water feature, pool, or spa. The system includes a rotatable base and a mirror support member hingedly coupled to the rotatable base. A first motor is coupled to the rotatable base and is configured to rotate the mirror support member in a first plane. A second motor is coupled to the rotatable base and a fixed mount, wherein the second motor is configured to rotate the rotatable base relative to the fixed mount thereby rotating the mirror support member in a second plane.
Abstract:
Some embodiments include an underwater projection system having a water feature and an ambient light in communication with the underwater projection system. A projector is disposed within the water feature and is designed to project an image out of the water feature into a body of water. A controller is in communication with the projector and operates both the ambient light and the projector.