摘要:
Improved efficacy and color rendition at white color temperatures is achieved in an electrodeless metal halide arc discharge lamp with a novel combination of arc tube fill materials, including sodium halide, cerium halide, and xenon. A preferred lamp structural configuration imparts further efficacy improvement at higher lamp operating temperatures and isothermal lamp operation.
摘要:
High pressure xenon is used as a buffer gas in place of mercury in a high pressure sodium iodide arc discharge lamp. Xenon buffer gas has a more favorable influence than mercury on the sodium D-line spectrum and does not react with halides in the lamp fill. The use of xenon buffer gas increases the efficacy of the high pressure sodium iodide arc lamp.
摘要:
The fill of a self-extinguishing gas probe starter for an electrodeless high intensity discharge lamp includes a starter fill component which has a relatively low vapor pressure and is substantially inert in the starter fill at ambient temperatures, but which component vaporizes and becomes electronegative as the temperature of the lamp increases, so that the starter fill component attaches electrons of the starting discharge in the gas probe starter and thereby extinguishes the starting discharge after initiation of the arc discharge in the arc tube. As a result, the flow of currents between the gas probe starter and the arc tube, which would otherwise have a detrimental effect on the arc tube wall, is avoided.
摘要:
An electrodeless high intensity discharge (HID) lamp having an arc tube, a starting aid, and an outer jacket all integrally formed of fused quartz, includes an excitation circuit for providing RF energy effective for initiating and maintaining a gas discharge within the arc tube. The arc tube is positioned within the outer jacket such that a minimum space exists between the outer jacket and the arc tube thereby allowing the efficient coupling of such RF energy to the arc tube by means of an excitation coil wound in close proximate location to the arc tube. The starting aid is of a substantially smaller dimension than the arc tube thereby allowing for a second spacing to occur above the arc tube. This second spacing is effective for optimum thermal management of heat generated within the outer jacket. The upper end of the outer jacket has an integrally formed annular groove for receiving an annular support member effective for securing the HID lamp to a lighting fixture.
摘要:
A high intensity metal halide arc discharge lamp, such as an electrodeless lamp wherein RF energy is inductively coupled to the arc discharge, contains a halide of neodymium alone or in combination with other metals such as one or more rare earth metals, Na, Cs and is essentially mercury free (i.e.,
摘要:
An electrodeless high intensity discharge (HID) lamp arc tube having a stabilized condensate location. The arc tube contains a predetermined location or distortion on the inside surface of the arc tube. The distortion may be a protrusion on the inside surface of the arc tube formed during the arc tube forming process. In operation of the lamp, the non gaseous dose remains condensed substantially in the cold spot region formed by said protrusion so that the arc tube walls remain clear for maximal light output, and the arc tube remains stable and efficacious to substantially higher power than is the case for arc tubes without the distortion.
摘要:
This electrodeless high intensity discharge lamp including a light-transmissive arc tube having spaced wall portions of dielectric material and a first gaseous fill within the arc tube. An excitation coil about the arc tube is energizable with RF current effective to develop a toroidal arc discharge in the first gaseous fill upon a dielectric breakdown of the fill. A starting container is joined to the arc tube and has an end wall constituted by one of said arc-tube wall portions. A second gaseous fill within the starting container has a dielectric strength lower than that of the first gaseous fill. For initiating the rotoidal arc discharge, we provide an arrangement for producing a dielectric breakdown of the gaseous fill within the starting container that develops into an electric discharge that changes the potential at the end wall in such a manner as to cause a dielectric breakdown of the first gaseous fill.
摘要:
This electrodeless high intensity discharge lamp comprises a light-transmissive arc tube having spaced wall portions of dielectric material and a first gaseous fill within the arc tube. An excitation coil about the arc tube is energizable with RF current effective to develop a toroidal arc discharge in the first gaseous fill upon a dielectric breakdown of the fill. A starting container is joined to the arc tube and has an end wall constituted by one of arc-tube wall portions. A second gaseous fill within the starting container has a dielectric strength lower than that of the first gaseous fill. For initiating toroidal arc discharge, we provide an arrangement for producing a dielectric breakdown of the gaseous fill within the starting container that develops into an electric discharge that changes the potential at end wall in such a manner as to cause a dielectric breakdown of first gaseous fill.
摘要:
Individual coolant passages in the airfoil portion of a liquid-cooled turbine bucket are each provided with a plurality of inwardly protruding circumferentially-extending crimps or rings located at spaced intervals along each passage, each crimp, protrusion or ring extending along the inner periphery in a plane generally perpendicular to the wall of the coolant passage at that location. The main flow of liquid coolant moving in each such individual passage during turbine operation under the combined influence of centrifugal and Coriolis forces is broken up and dispersed over an enlarged area of the interior of the coolant passage upon encountering the protrusions.
摘要:
A lamp assembly (10) includes a body (12) having a concave reflecting surface (16) that opens toward a first or open end (18) and a neck (22) at a second end includes an opening (24). A light source (30) is received in the body adjacent the reflecting surface and has a seal or pinch region (44) which extends into the neck. A mounting clip (80) includes a plate (82) that engages the outer surface of the neck. First and second legs (84, 86) of the mounting clip engage the pinch region via teeth (88), while arms (90, 92) engage an internal surface (94) of the neck.