摘要:
The present invention is generally directed to core/shell nanoparticles, wherein such core/shell nanoparticles comprise a nanoparticle core and a nanoshell disposed about the nanoparticle core such that, in the aggregate, they form a core/shell nanoparticle that is operable for use as an imaging agent in X-ray/computed tomography (CT). Typically, such core/shell nanoparticle-based X-ray CT imaging agents further comprise a targeting species for targeting the imaging agent to diseased sites. Included herein are methods for forming such agents, comprising forming an ensemble of core/shell nanoparticles, wherein the mean diameter of the ensemble of core/shell nanoparticles is selected so as to render the nanoparticles in the ensemble substantially clearable by a mammalian kidney.
摘要:
Compositions of nanoparticles functionalized with at least one zwitterionic moiety, methods for making a plurality of nanoparticles, and methods of their use as diagnostic agents are provided. The nanoparticles have characteristics that result in minimal retention of the particles in the body compared to other nanoparticles. The nanoparticle comprises a core, having a core surface essentially free of silica, and a shell attached to the core surface. The shell comprises at least one silane-functionalized zwitterionic moiety.
摘要:
Compositions of nanoparticles functionalized with at least one zwitterionic moiety, methods for making a plurality of nanoparticles, and methods of their use as diagnostic agents are provided. The nanoparticles have characteristics that result in minimal retention of the particles in the body compared to other nanoparticles. The nanoparticle comprises a core, having a core surface essentially free of silica, and a shell attached to the core surface. The shell comprises at least one silane-functionalized zwitterionic moiety.
摘要:
Composition of non-radioactive traceable metal isotope-enriched nanoparticles, and methods of their use for determining in-vivo biodistribution are provided. The methods comprise the steps of: (a) introducing the nanoparticles into the biological material, wherein the nanoparticles comprise at least one inorganic core, and the inorganic core comprises at least two metal isotopes in a predetermined ratio; wherein at least one metal isotope is enriched non-radioactive traceable metal isotope and (b) determining the distribution of the nanoparticles in the biological material based on the predetermined ratio of the metal isotopes.
摘要:
The present invention provides a trialkoxysilanes having structure I wherein R1 and R2 are independently at each occurrence a C1-C3 alkyl group; R3 is independently at each occurrence a hydrogen or a C1-C3 alkyl group; R4 is a C1-C5 aliphatic radical, a C7-C12 aromatic radical, or a C5-C10 cycloaliphatic group; n is 0, 1, 2 or 3; q is 1, 2 or 3; and X− represents a charge balancing counterion. The trialkoxysilanes are useful for the preparation of nanoparticulate diagnostic imaging agent compositions.
摘要:
The present invention provides a trialkoxysilane having structure I wherein R1 is independently at each occurrence a C1-C3 alkyl group; R3 is independently at each occurrence a hydrogen or a C1-C3 alkyl group; R4 is a C1-C5 aliphatic radical, a C7-C12 aromatic radical, or a C5-C10 cycloaliphatic group; n is 0, 1, 2 or 3; q is 1, 2 or 3; t is 0, 1 or 2; and X− represents a charge balancing counterion. The trialkoxysilanes are useful for the preparation of nanoparticulate diagnostic imaging agent compositions.
摘要:
The present invention provides novel metal alginates prepared from non-cross-linked alginate monomers such as sodium alginate and an aqueous solution of a group 4, 5, or 6 metal oxyhalide. The novel group 4, 5, and 6 metal alginates are useful in the preparation of cell culture supports, exhibit useful X-ray contrast properties, and exhibit unanticipated stability to standard autoclave conditions relative to known metal alginates such as calcium alginate. In general, the novel metal alginates provided by the present invention offer features and properties not observed in known metal alginates such as calcium or barium alginates.
摘要:
A method of making a nanocomposite permanent magnet is provided. The method comprises applying an extreme shear deformation to hard magnetic phase nanoparticles and soft magnetic phase nanoparticles to align at least a portion of the hard phase magnetic particles and to produce a nanocomposite permanent magnet.