摘要:
The disclosure relates to a control device for a pneumatically operated actuator in the field of process automation, in particular for continuous control of material flows in the industrial environment. The control device has a communications interface for receiving an electrical setpoint value, and an output for the output of a pneumatic fluid, whose pressure is varied as a function of a control deviation. The received electrical setpoint value is suitable as a process parameter. The control device is connected via a communications channel to an actual-value encoder, which is designed to output an electrical signal corresponding to the actual value of the same process parameter.
摘要:
The disclosure relates to a control device for a pneumatically operated actuator in the field of process automation, in particular for continuous control of material flows in the industrial environment. The control device has a communications interface for receiving an electrical setpoint value, and an output for the output of a pneumatic fluid, whose pressure is varied as a function of a control deviation. The received electrical setpoint value is suitable as a process parameter. The control device is connected via a communications channel to an actual-value encoder, which is designed to output an electrical signal corresponding to the actual value of the same process parameter.
摘要:
The invention relates to a device and a method for the status monitoring of a pressure measuring unit in an absolute or differential or relative pressure transducer, a pressure-sensitive element installed in the pressure measuring unit being impinged with at least one pressure generated by at least one membrane. During a defined diagnosis time interval, a testing element integrated in the pressure measuring unit is induced to undergo a change in volume, preferably by electrical activation. The pressure difference caused as a result in the pressure measuring unit is registered by a pressure-sensitive element. The curve registered during a diagnosis time interval is compared with a reference curve recorded with the pressure measuring unit intact. A fault indication is given if the deviations between the registered curve and the reference curve exceed predetermined tolerance values.
摘要:
The invention relates to a device and a method for the status monitoring of a pressure measuring unit in an absolute or differential or relative pressure transducer, a pressure-sensitive element installed in the pressure measuring unit being impinged with at least one pressure by means of at least one membrane. During a defined diagnosis time interval, a testing element integrated in the pressure measuring unit is induced to undergo a change in volume, preferably by electrical activation. The pressure difference caused as a result in the pressure measuring unit is registered by a pressure-sensitive element. The curve registered during a diagnosis time interval is compared with a reference curve recorded with the pressure measuring unit intact. A fault indication is given if the deviations between the registered curve and the reference curve exceed predetermined tolerance values.
摘要:
Exemplary embodiments are directed to processing a sensor signal using the correction parameters assigned to the sensor. A pressure transducer is disclosed for measuring and converting absolute pressure and/or differential pressure into an adequate electrical measurement signal with the aid of a processing unit having an associated read-only memory, in which is stored a set of correction parameters for correcting the measurement signal.
摘要:
The disclosure relates to a differential pressure transducer unit comprising an over-load protection system which is used to measure low differential pressure in liquids and gases under high static pressure load which can be connected to flanges on the working pressure lines. The differential pressure transducer unit consists of a planar multi-layered arrangement comprising layers which are conductive, insulating and which are insulated from each other, whereby the insulating and conductive layers comprises recesses which at least partially cover each other, wherein the measuring mechanism and the measuring value processing means are accommodated. At least one of the layers is a functional component of the over-load protection system.
摘要:
A differential pressure sensor has a first and a second measuring chamber. Each measuring chamber is limited by a rigid carrier plate and a diaphragm plate, which is formed in the region of the measuring chamber as a pressure-sensitive measuring diaphragm. To design the differential pressure sensor to be resistant to overloading, the carrier plate is arranged between a first and a second diaphragm plate and has congruent concave depressions on opposite sides in the plane of the plate. The depressions are connected to one another by a central duct, penetrating the carrier plate perpendicularly to the plane of the plates. In the region of the measuring chambers, the diaphragm plates are formed congruently in relation to the depressions as pressure-sensitive measuring diaphragms. The measuring chambers are coupled to one another by a ram guided axially movably in the duct.
摘要:
A differential pressure sensor has a first and a second measuring chamber. Each measuring chamber is limited by a rigid carrier plate and a diaphragm plate, which is formed in the region of the measuring chamber as a pressure-sensitive measuring diaphragm. To design the differential pressure sensor to be resistant to overloading, the carrier plate is arranged between a first and a second diaphragm plate and has congruent concave depressions on opposite sides in the plane of the plate. The depressions are connected to one another by a decentered duct, penetrating the carrier plate perpendicularly to the plane of the plates. In the region of the measuring chambers, the diaphragm plates are formed congruently in relation to the depressions as pressure-sensitive measuring diaphragms. The measuring chambers and the duct are filled with an incompressible fluid.
摘要:
There is described a capacitive differential pressure sensor made using glass-silicon technology with a diaphragm plate of silicon, which is arranged between two carrier plates consisting of glass. The diaphragm plate has pressure-sensitively deflectable regions, which are respectively provided with a capacitor arrangement. The capacitor arrangement is connected to a measured-value processing device through connecting conductors. To improve the ratio of the measuring capacitances to the parasitic capacitances brought about by the connecting conductors, the diaphragm plate is outside the pressure-sensitively deflectable region the substrate of an electronic circuit which comprises at least one input stage of the measured-value processing device.
摘要:
There is described a differential pressure sensor made using glass-silicon technology with a diaphragm plate arranged between two carrier plates. To achieve a high resolution at the beginning of the measuring range in conjunction with high overload resistance, the measuring diaphragm plate of the sensor has for a prescribed measuring range within the same measuring chambers a plurality of mutually independent deflectable regions as measuring diaphragms. Each such region acts as a part-sensor with a part-measuring range. The part-measuring ranges of the part-sensors overlap and in total are equal to the prescribed measuring range of the differential pressure sensor. The displacement of the measuring diaphragm of each part-sensor is mechanically limited outside its part-measuring range by the carrier plates.