摘要:
An optical device is provided by a pigtailing method and comprises a substrate on which are integrated a layered optical waveguide component and optical fibre ends. The optical fibre ends are positioned in grooves). The method involves providing a substrate comprising grooves, notably V-shaped grooves, with a separately made optical waveguide component. The component is made on a separate flat substrate and released by virtue of a releasable layer present on the flat substrate. An advantageous releasable layer is made of a water-soluble salt. Flexible waveguide sheets such as can be used in the previously described method or, if provided with waveguide channels, as flexible waveguide components themselves are also disclosed.
摘要:
The invention relates to a pigtailing method, i.e., the invention provides an optical device comprising a substrate on which are integrated a layered optical waveguide component (3) and optical fiber ends (13). The optical fiber ends are positioned in grooves (10). The method involves providing a substrate (7) comprising grooves (10), notably V-shaped grooves, with a separately made optical waveguide component (3). The component (3) is made on separate flat substrate (1), and released by virtue of a releasable layer (2) present on the flat substrate (1). An advantageous releasable layer is made of a water-soluble salt. The invention also pertains to flexible waveguide sheets such (3) as can be used in the above method or, if provided with waveguide channels (12), as a flexible waveguide component themselves.
摘要:
The invention relates to a polymeric optical amplifier doped with lanthanide ions, which are present in the amplifier in the form of a complex.The invention also relates to novel electrically neutral lanthanide complexes which can be applied with advantage in the above-described polymeric optical amplifiers. These complexes comprise host molecules which readily complex with the lanthanide and fully encapsulate it.
摘要:
The invention is in the field of retardation layers comprising high-molecular weight liquid-crystalline material for liquid-crystalline displays. The invention is directed to a retardation layer for a liquid-crystalline display comprising high-molecular weight liquid-crystalline material, wherein the dispersion has been adapted to that of the active liquid-crystalline cell by varying the mesogenic groups of the high-molecular weight liquid-crystalline material, so that the difference in dispersion between the active cell and the retardation layer in the wavelength area of 400-800 nm is not more than 0.1.