摘要:
A method of turning a medical device, having a magnetically responsive element associated with its distal end, at an operating point within an operating region inside a patient's body from an initial direction to a desired final direction, through the movement of at least one external source magnet. The at least one external source magnet is moved in such a way as to change the direction of the distal end of the magnetic medical device from the initial direction to the desired final direction without substantial deviation from the plane containing the initial direction and the desired final direction.
摘要:
The movement of a catheter through a medium, which may be living tissue such as a human brain, is controlled by mechanically pushing a flexible catheter having a magnetic tip through the medium and applying a magnetic field having a magnitude and a direction that guides the mechanically-pushed catheter tip stepwise along a desired path. The magnetic field is controlled in a Magnetic Stereotaxis System by a processor using an adaptation of a PID (proportional, integral, and derivative) feedback method. The magnetic fields are applied by superconducting coils, and the currents applied through the coils are selected to minimize a current metric.
摘要:
The movement of a catheter through a medium, which may be living tissue such as a human brain, is controlled by mechanically pushing a flexible catheter having a magnetic tip through the medium and applying a magnetic field having a magnitude and a direction that guides the mechanically-pushed catheter tip stepwise along a desired path. The magnetic field is controlled in a Magnetic Stereotaxis System by a processor using an adaptation of a PID (proportional, integral, and derivative) feedback method. The magnetic fields are applied by superconducting coils, and the currents applied through the coils are selected to minimize a current metric.
摘要:
A method of turning a medical device, having a magnetically responsive element associated with its distal end, at an operating point within an operating region inside a patient's body from an initial direction to a desired final direction, through the movement of at least one external source magnet. The at least one external source magnet is moved in such a way as to change the direction of the distal end of the magnetic medical device from the initial direction to the desired final direction without substantial deviation from the plane containing the initial direction and the desired final direction.
摘要:
A method of turning a medical device, having a magnetically responsive element associated with its distal end, at an operating point within an operating region inside a patient's body from an initial direction to a desired final direction, through the movement of at least one external source magnet. The at least one external source magnet is moved in such a way as to change the direction of the distal end of the magnetic medical device from the initial direction to the desired final direction without substantial deviation from the plane containing the initial direction and the desired final direction.
摘要:
The movement of a catheter through a medium, which may be living tissue such as a human brain, is controlled by mechanically pushing a flexible catheter having a magnetic tip through the medium and applying a magnetic field having a magnitude and a direction that guides the mechanically-pushed catheter tip stepwise along a desired path. The magnetic field is controlled in a Magnetic Stereotaxis System by a processor using an adaptation of a PID (proportional, integral, and derivative) feedback method. The magnetic fields are applied by superconducting coils, and the currents applied through the coils are selected to minimize a current metric.
摘要:
A method of turning a medical device, having a magnetically responsive element associated with its distal end, at an operating point within an operating region inside a patient's body from an initial direction to a desired final direction, through the movement of at least one external source magnet. The at least one external source magnet is moved in such a way as to change the direction of the distal end of the magnetic medical device from the initial direction to the desired final direction without substantial deviation from the plane containing the initial direction and the desired final direction.
摘要:
A method of turning a medical device, having a magnetically responsive element associated with its distal end, at an operating point within an operating region inside a patient's body from an initial direction to a desired final direction, through the movement of at least one external source magnet. The at least one external source magnet is moved in such a way as to change the direction of the distal end of the magnetic medical device from the initial direction to the desired final direction without substantial deviation from the plane containing the initial direction and the desired final direction.
摘要:
A method of turning a medical device, having a magnetically responsive element associated with its distal end, at an operating point within an operating region inside a patient's body from an initial direction to a desired final direction, through the movement of at least one external source magnet. The at least one external source magnet is moved in such a way as to change the direction of the distal end of the magnetic medical device from the initial direction to the desired final direction without substantial deviation from the plane containing the initial direction and the desired final direction.
摘要:
The movement of a catheter through a medium, which may be living tissue such as a human brain, is controlled by mechanically pushing a flexible catheter having a magnetic tip through the medium and applying a magnetic field having a magnitude and a direction that guides the mechanically-pushed catheter tip stepwise along a desired path. The magnetic field is controlled in a Magnetic Stereotaxis System by a processor using an adaptation of a PID (proportional, integral, and derivative) feedback method. The magnetic fields are applied by superconducting coils, and the currents applied through the coils are selected to minimize a current metric.