摘要:
One embodiment of the present invention sets forth a technique for managing the allocation and release of resources during multi-threaded program execution. Programmable reference counters are initialized to values that limit the amount of resources for allocation to tasks that share the same reference counter. Resource parameters are specified for each task to define the amount of resources allocated for consumption by each array of execution threads that is launched to execute the task. The resource parameters also specify the behavior of the array for acquiring and releasing resources. Finally, during execution of each thread in the array, an exit instruction may be configured to override the release of the resources that were allocated to the array. The resources may then be retained for use by a child task that is generated during execution of a thread.
摘要:
One embodiment of the present invention sets forth a technique for managing the allocation and release of resources during multi-threaded program execution. Programmable reference counters are initialized to values that limit the amount of resources for allocation to tasks that share the same reference counter. Resource parameters are specified for each task to define the amount of resources allocated for consumption by each array of execution threads that is launched to execute the task. The resource parameters also specify the behavior of the array for acquiring and releasing resources. Finally, during execution of each thread in the array, an exit instruction may be configured to override the release of the resources that were allocated to the array. The resources may then be retained for use by a child task that is generated during execution of a thread.
摘要:
One embodiment of the present invention sets forth a technique for enabling the insertion of generated tasks into a scheduling pipeline of a multiple processor system allows a compute task that is being executed to dynamically generate a dynamic task and notify a scheduling unit of the multiple processor system without intervention by a CPU. A reflected notification signal is generated in response to a write request when data for the dynamic task is written to a queue. Additional reflected notification signals are generated for other events that occur during execution of a compute task, e.g., to invalidate cache entries storing data for the compute task and to enable scheduling of another compute task.
摘要:
One embodiment of the present invention sets forth a technique for enabling the insertion of generated tasks into a scheduling pipeline of a multiple processor system allows a compute task that is being executed to dynamically generate a dynamic task and notify a scheduling unit of the multiple processor system without intervention by a CPU. A reflected notification signal is generated in response to a write request when data for the dynamic task is written to a queue. Additional reflected notification signals are generated for other events that occur during execution of a compute task, e.g., to invalidate cache entries storing data for the compute task and to enable scheduling of another compute task.
摘要:
One embodiment of the present invention sets forth a technique for automatic launching of a dependent task when execution of a first task completes. Automatically launching the dependent task reduces the latency incurred during the transition from the first task to the dependent task. Information associated with the dependent task is encoded as part of the metadata for the first task. When execution of the first task completes a task scheduling unit is notified and the dependent task is launched without requiring any release or acquisition of a semaphore. The information associated with the dependent task includes an enable flag and a pointer to the dependent task. Once the dependent task is launched, the first task is marked as complete so that memory storing the metadata for the first task may be reused to store metadata for a new task.
摘要:
One embodiment of the present invention sets forth a technique for assigning a compute task to a first processor included in a plurality of processors. The technique involves analyzing each compute task in a plurality of compute tasks to identify one or more compute tasks that are eligible for assignment to the first processor, where each compute task is listed in a first table and is associated with a priority value and an allocation order that indicates relative time at which the compute task was added to the first table. The technique further involves selecting a first task compute from the identified one or more compute tasks based on at least one of the priority value and the allocation order, and assigning the first compute task to the first processor for execution.
摘要:
One embodiment of the present invention sets forth a technique for selecting a first processor included in a plurality of processors to receive work related to a compute task. The technique involves analyzing state data of each processor in the plurality of processors to identify one or more processors that have already been assigned one compute task and are eligible to receive work related to the one compute task, receiving, from each of the one or more processors identified as eligible, an availability value that indicates the capacity of the processor to receive new work, selecting a first processor to receive work related to the one compute task based on the availability values received from the one or more processors, and issuing, to the first processor via a cooperative thread array (CTA), the work related to the one compute task.
摘要:
One embodiment of the present invention sets forth a technique for assigning a compute task to a first processor included in a plurality of processors. The technique involves analyzing each compute task in a plurality of compute tasks to identify one or more compute tasks that are eligible for assignment to the first processor, where each compute task is listed in a first table and is associated with a priority value and an allocation order that indicates relative time at which the compute task was added to the first table. The technique further involves selecting a first task compute from the identified one or more compute tasks based on at least one of the priority value and the allocation order, and assigning the first compute task to the first processor for execution.
摘要:
One embodiment of the present invention sets forth a technique for selecting a first processor included in a plurality of processors to receive work related to a compute task. The technique involves analyzing state data of each processor in the plurality of processors to identify one or more processors that have already been assigned one compute task and are eligible to receive work related to the one compute task, receiving, from each of the one or more processors identified as eligible, an availability value that indicates the capacity of the processor to receive new work, selecting a first processor to receive work related to the one compute task based on the availability values received from the one or more processors, and issuing, to the first processor via a cooperative thread array (CTA), the work related to the one compute task.
摘要:
One embodiment of the present invention sets forth a technique for performing nested kernel execution within a parallel processing subsystem. The technique involves enabling a parent thread to launch a nested child grid on the parallel processing subsystem, and enabling the parent thread to perform a thread synchronization barrier on the child grid for proper execution semantics between the parent thread and the child grid. This technique advantageously enables the parallel processing subsystem to perform a richer set of programming constructs, such as conditionally executed and nested operations and externally defined library functions without the additional complexity of CPU involvement.