Abstract:
This disclosure provides systems, methods and apparatus for dissipating charge buildup within a display element with a conductive layer. The conductive layer is maintained in electrical contact with a fluid within the display element. The fluid, in turn, remains in contact with light modulators within the display elements. Any charge buildup that may be caused by the filling of the fluid during fabrication of the display device, or during operation of the light modulators can be dissipated by the conductive layer. Thus, by dissipating the charge buildup, the conductive layer reduces or eliminates electrostatic forces due to the charge buildup that may affect the operability of the light modulators. The display can include conductive spacers in an active display region of the display and a spacer-free region that allows the substrates to deform while retaining an electrical connection between the conductive layer and the spacers in the active display region.
Abstract:
This disclosure provides systems, methods and apparatus for providing multiple dielectric coatings for a shutter assembly. The multiple dielectric coatings include an outer dielectric coating and one or more inner dielectric coatings. The outer dielectric coating has an electrical trap density that is lower than electrical trap densities of the one or more inner dielectric coatings. The lower electrical trap density reduces the amount of charge buildup over various surfaces of the shutter assembly. This reduction in charge buildup also reduces electrostatic forces that may cause incorrect operation of the shutter assembly.
Abstract:
This disclosure provides systems, methods and apparatus for dissipating charge buildup within a display element with a conductive layer. The conductive layer is maintained in electrical contact with a fluid within the display element. The fluid, in turn, remains in contact with light modulators within the display elements. Any charge buildup that may be caused by the filling of the fluid during fabrication of the display device, or during operation of the light modulators can be dissipated by the conductive layer. Thus, by dissipating the charge buildup, the conductive layer reduces or eliminates electrostatic forces due to the charge buildup that may affect the operability of the light modulators. The display can include conductive spacers in an active display region of the display and a spacer-free region that allows the substrates to deform while retaining an electrical connection between the conductive layer and the spacers in the active display region.
Abstract:
This disclosure provides systems, methods and apparatus for providing multiple dielectric coatings for a shutter assembly. The multiple dielectric coatings include an outer dielectric coating and one or more inner dielectric coatings. The outer dielectric coating has an electrical trap density that is lower than electrical trap densities of the one or more inner dielectric coatings. The lower electrical trap density reduces the amount of charge buildup over various surfaces of the shutter assembly. This reduction in charge buildup also reduces electrostatic forces that may cause incorrect operation of the shutter assembly.