Abstract:
This disclosure provides systems, methods and apparatus for controlling the states of a light modulator used in displays. A display apparatus includes pixels circuit for controlling the state of operation of dual actuator light modulators. The pixel circuit can be implemented using three transistors and a capacitor. In particular, the pixel circuit can include a charge-discharge transistor, a data transistor, and a feedback transistor. The charge-discharge transistor is used to both selectively charge and selectively discharge an output node of the pixel circuit coupled to the light modulator. The data transistor enables loading a data capacitor with data voltage representative of image data. The feedback transistor provides positive feedback to allow the output node to be charged to the actuation voltage via the charge-discharge transistor.
Abstract:
This disclosure provides systems, methods, and apparatus for reducing ambient light reflection in a display device having a backplane incorporating low-temperature polycrystalline silicon (LTPS) transistors. Ambient reflection can be reduced by incorporating both conductive and non-conductive light-absorbing materials into the display backplane. A light-absorbing conductive material that can withstand the temperatures generated by laser annealing of LTPS transistor channels can be deposited and patterned such that its footprint substantially coincides with the footprints of the LTPS channels. After the LTPS channels are fabricated, a light-absorbing dielectric material can be deposited with a footprint extending at least below the footprints of other reflective components of the backplane to be positioned above the light-absorbing dielectric material. Together, the light-absorbing conductive material and the light-absorbing dielectric material can obstruct substantially all of the reflective surfaces within the backplane, thereby reducing reflection of ambient light by the backplane.
Abstract:
This disclosure provides systems, methods, and apparatus for altering the selected operating mode and image formation characteristics of a content item displayed on a display device. The content item can include a license header that includes a permission code and a preferred operating mode. The preferred operating mode can specify a selected operating mode or image formation characteristics preselected for display of the content item. Control logic can check the permission code against a permission code table to determine one or more permissions associated with the content item. A valid permission code can allow the control logic to alter the current selected operating mode and/or image formation characteristics based on the selected operating mode and/or image formation characteristics specified by the preferred operating mode in the license header.
Abstract:
This disclosure provides systems, methods and apparatus for a capacitance change tracking circuit. In one aspect, the capacitance change tracking circuit may determine a capacitance change associated with a display element including a movable element capable of positioning from a first position to a second position. The capacitance change tracking circuit may adjust an operating parameter of the display element based on the capacitance change. For example, the adjusted operating parameter may be an adjustment to an allocated time for the movable element to position from the first position to the second position or an adjustment to a voltage applied to an electrode of the display element.
Abstract:
This disclosure provides devices, apparatuses and methods of providing an optical filter with quantum dot films for converting a first wavelength of light to a second wavelength of light. The optical filter includes a plurality of high refractive index layers and a plurality of low refractive index layers alternatingly disposed between the high refractive index layers. Quantum dots are dispersed in either the high refractive index layers or the low refractive index layers. In some implementations, the quantum dots are capable of absorbing blue light and emitting green light. Thus, the optical filter can be part of a red-green-blue lighting device that includes a first blue LED optically coupled with the optical filter to produce green light, a red LED and a second blue LED.
Abstract:
This disclosure provides systems, methods and apparatus for a display apparatus including dummy display elements that can be switched between being coupled to a test bus and a drive bus. When connected to the drive bus, the circuit components, including thin-film transistors, of the dummy display element experience exposure to typical operating signals. When connected to the test bus, the display apparatus can test the operating parameters of the dummy display element circuit components.
Abstract:
This disclosure provides systems, methods and apparatus for a display apparatus including dummy display elements that can be switched between being coupled to a test bus and a drive bus. When connected to the drive bus, the circuit components, including thin-film transistors, of the dummy display element experience exposure to typical operating signals. When connected to the test bus, the display apparatus can test the operating parameters of the dummy display element circuit components.
Abstract:
This disclosure provides systems, methods, and apparatus for providing pixel circuits for controlling the state of operation of light modulators in a display device. The state of operation of the light modulator can be controlled by the pixel circuit based on a data voltage stored in a data storage element of the pixel circuit. The pixel circuit includes an actuation circuit for providing an actuation voltage to the light modulator and a feedback circuit for providing a positive feedback voltage from an output node of the actuation circuit to an input node of the actuation circuit. In some implementations, the feedback circuit includes the data storage element connected between the input node and the output node.
Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a multi-primary display. A multi-primary display can include control logic that provides sets of subframe slots for displaying color subfields of an image frame. Each set includes a fixed number of subframe slots, which can be used for displaying any or all image subframes output by the display. The control logic can evaluate the image frame to determine which one of the sets of subframe slots to assign to each of the color subfields used to display the image frame. For example, the control logic can display the image frame using red (R), green (G), blue (B) and white (W) color subfields. The control logic determines which set of subframe slots to assign each subfield based on relative luminances of the color subfields within the image frame.
Abstract:
Systems, methods and methods of manufacture for, among other things, a MEMS display that has a substrate with a first and a second array of apertures. The first and second arrays are, typically, formed on the substrate so that the arrays are adjacent and define a field boundary line that may extend between the two arrays and along a width of the substrate. In at least one array, the apertures that are proximate the field boundary line are placed at locations on the substrate to reduce differences in luminance between one portion of the display and another portion of the display.