摘要:
In a multi-chip module (MCM), integrated circuits are coupled by optical waveguides. These integrated circuits receive optical signals from a set of tunable light sources. Moreover, a given integrated circuit includes: a transmitter that modulates at least one of the optical signals when transmitting information to at least another of the integrated circuits; and a receiver that receives at least one modulated optical signal having a given carrier wavelength associated with the given integrated circuit when receiving information from at least the other of the integrated circuits. Furthermore, control logic in the MCM provides a control signal to the set of tunable light sources to specify carrier wavelengths in the optical signals output by the set of tunable light sources, thereby defining routing of at least the one of the optical signals in the MCM during communication between at least a pair of the integrated circuits.
摘要:
In a multi-chip module (MCM), integrated circuits are coupled by optical waveguides. These integrated circuits receive optical signals from a set of light sources which have fixed carrier wavelengths. Moreover, a given integrated circuit includes: a transmitter that modulates at least one of the optical signals when transmitting information to at least another of the integrated circuits; and a receiver that receives at least one modulated optical signal having one of the carrier wavelengths when receiving information from at least the other of the integrated circuits. Furthermore, the MCM includes tunable drop filters optically coupled to the optical waveguides and associated integrated circuits, wherein the tunable drop filters pass adjustable bands of wavelengths to receivers in the integrated circuits. Additionally, control logic in the MCM provides a control signal to the tunable drop filters to specify the adjustable bands of wavelengths.
摘要:
In a multi-chip module (MCM), integrated circuits are coupled by optical waveguides. These integrated circuits receive optical signals from a set of light sources which have fixed carrier wavelengths. Moreover, a given integrated circuit includes: a transmitter that modulates at least one of the optical signals when transmitting information to at least another of the integrated circuits; and a receiver that receives at least one modulated optical signal having one of the carrier wavelengths when receiving information from at least the other of the integrated circuits. Furthermore, the MCM includes switchable drop filters optically coupled to the optical waveguides and associated integrated circuits, wherein the switchable drop filters pass adjustable bands of wavelengths to receivers in the integrated circuits. Additionally, control logic in the MCM provides a control signal to the switchable drop filters to specify the adjustable bands of wavelengths.
摘要:
A multi-chip module (MCM) is described. This MCM includes multiple sites, where a given site in the multiple sites includes multiple chips with proximity connectors that communicate information through proximity communication within the MCM via multiple components associated with the given site. Note that the MCM includes global redundancy and local redundancy at the given site. In particular, the global redundancy involves providing one or more redundant sites in the multiple sites. Furthermore, the local redundancy involves providing one or more redundant chips in the multiple chips and one or more redundant components in the multiple components.
摘要:
A multi-chip module (MCM) is described. This MCM includes multiple sites, where a given site in the multiple sites includes multiple chips with proximity connectors that communicate information through proximity communication within the MCM via multiple components associated with the given site. Note that the MCM includes global redundancy and local redundancy at the given site. In particular, the global redundancy involves providing one or more redundant sites in the multiple sites. Furthermore, the local redundancy involves providing one or more redundant chips in the multiple chips and one or more redundant components in the multiple components.
摘要:
A system for transmitting data, including: a transmitter node having a setup path packet and multiple data packets; a receiver node connected to the transmitter node by a first optical channel (OC); and a first intermediate node having a first forwarding module and connected to the transmitter node by a second OC and to the receiver node by a third OC, where the transmitter node transmits the setup path packet and a first subset of the multiple data packets to the first intermediate node using the second OC, where the first forwarding module relays, in response to receiving the setup packet, the first subset to the receiver node by switching the first subset from the second OC to the third OC, and where the receiver node receives a second subset of the multiple data packets from the transmitter node using the first OC.
摘要:
A method for arbitration including selecting, for an arbitration interval corresponding to a timeslot, a sending node from a plurality of sending nodes in an arbitration domain, where the plurality of sending nodes include a plurality of source counters; broadcasting, by the sending node and in response to selecting the sending node, a transmitter arbitration request for the timeslot during the arbitration interval; receiving, by the plurality of sending nodes, the transmitter arbitration request; incrementing the plurality of source counters in response to receiving the transmitter arbitration request; and sending, during the timeslot, a data item from the sending node to a receiving node via an optical data channel.
摘要:
A method of detecting transmission collisions in an optical data interconnect system including a transmitting node, a plurality of receiving nodes, and one or more remaining nodes connected through an optical data channel. The method includes initiating a data transmission of a data signal from the transmitting node over the optical data channel, transmitting a first collision detect signal from the transmitting node throughout a duration of the data transmission where the first collision detect signal is transmitted over an optical detection channel corresponding to the transmitting node, monitoring at the transmitting node of the optical data interconnect system for a predetermined period of time, where the optical data interconnect system further includes a plurality of optical collision detection channels corresponding to each of the plurality of receiving nodes and the one or more remaining nodes, and identifying a transmission collision when a second collision signal is received through one of the plurality of optical collision detection channels at the transmitting node during the predetermined period of time.
摘要:
A method of arbitrating data transmissions to prevent data collisions in an optical data interconnect system including a transmitting node, a plurality of receiving nodes, and one or more remaining nodes connected through an optical data channel. The method involves transmitting a transmission request signal from the transmitting node over an arbitration channel corresponding to the transmitting node, monitoring, at the transmitting node, a plurality of arbitration channels corresponding to each of the plurality of receiving nodes and the one or more remaining nodes at the transmitting node for a predetermined period of time, determining a start time for a data transmission from the transmitting node based on the monitored signals to prevent a data collision, and initiating a data transmission of a data signal from the transmitting node over the optical data channel at the determined start time.
摘要:
A system including first and second sending nodes, a horizontal optical data link (ODL) having optical signals propagating in opposite directions in first and second waveguide segments, a vertical ODL having optical signals propagating in the same direction throughout third and fourth waveguide segments, a first optical output switch operatively connecting the first sending node and the first waveguide segment and configured to switch first data item onto the first waveguide segment during a first timeslot, a second optical output switch operatively connecting the second sending node and the second waveguide segment and configured to switch second data item onto the second waveguide segment during a second timeslot, and an optical coupler pair operatively connecting the first and second waveguide segments to the third and fourth waveguide segments, respectively, and redirecting the first and the second data items from the horizontal to the vertical ODL.