Abstract:
Wireless communications systems and methods related to the timing arrangements and the transmission gap configurations in 2-step random access channel (RACH) procedures to improve system latency and reliability of a RACH HARQ process are provided. The UE transmits a first message including a random access preamble and a payload, and then monitors for a second message in response to the first message during a random access response (RAR) window. In response to determining that no second message is received by the UE from the BS or a back off indicator is received within the RAR window, the UE re-transmits the preamble and payload of the first message after the RAR window lapses. In response to determining if the second message received within the RAR window carries a FallbackRAR or SuccessRAR, the UE then determines to re-transmit the payload of the first message based on the FallbackRAR, or to transmit an acknowledgement message based on the SuccessRAR.
Abstract:
In an aspect, a UE determines whether there is an overlap between a first uplink transmission channel allocated for transmission of a first uplink transmission and a second uplink transmission channel allocated for transmission of second uplink transmission. The UE generates a combined uplink transmission payload in response to a determination that there is the overlap, wherein the combined uplink transmission payload includes at least a portion of the first uplink transmission and at least a portion of the second uplink transmission. The UE transmits the combined uplink transmission payload on either the first uplink transmission channel or the second uplink transmission channel. A base station receives the combined uplink transmission payload transmitted by the UE.
Abstract:
Certain aspects of the present disclosure relate to uplink preemption in certain systems, such as new radio (NR) systems, supporting carrier aggregation (CA) and/or multi-connectivity modes. A method for wireless communication, that can be performed by a user equipment (UE), generally includes receiving a resource assignment scheduling the UE for uplink transmission. The UE receives an indication to preempt uplink transmission on a portion of the assigned resources and determines whether to transmit on the remaining assigned resources. A method that can be performed by a base station (BS) generally includes receiving an indication from one or more UEs indicating, for each of a plurality of band combinations, a capability of the UE to transmit on a band when transmission on another band in the band combination is preempted and scheduling the one or more UEs for uplink transmission based on the indication.
Abstract:
Aspects of the disclosure relate to communication systems, apparatus and methods which enable or support configuring timing advance in a radio access network. The method includes defining a timing advance configuration for a radio access network that employs a modulation scheme with scalable numerology, determining timing advance parameters consistent with the timing advance configuration for a user equipment (UE) that is in communication with the radio access network, and transmitting the timing advance parameters to the UE during an initial access procedure involving the UE or while the UE is in a connected state in the radio access network. The timing advance configuration may be defined to accommodate a numerology used by the radio access network.
Abstract:
Certain aspects of the present disclosure relate to reporting difference in timing between cells using multiple connectivity in a wireless network. A first connection served by at least a first cell and a second connection served by at least a second cell to facilitate communicating with at least the first cell and at least the second cell are established. A reporting configuration specifying one or more parameters related to reporting a timing difference between cells is received. A timing difference between at least the first cell and at least the second cell is determined, and the timing difference is reported to at least the first cell over the first connection or to at least the second cell over the second connection. This can facilitate scheduling time aligned operations over the first and second cells, or related cell groups, in multiple connectivity.
Abstract:
Certain aspects of the present disclosure provide techniques for uplink preemption indication. A method for wireless communication by a user equipment (UE) includes receiving at least one ULPI from a base station (BS) indicating, for each of a plurality of sets of uplink resources, a power level the UE can use for one or more uplink transmissions. The UE can determine one or more power levels indicated by the ULPI for resources allocated for the UE for uplink transmission. The allocated resources may include multiple of the sets of uplink resources. The UE can select the power level to use for uplink transmission using the allocated resources based, at least in part, on the determination. The UE sends or drops the one or more uplink transmissions according to the ULPI. A time duration of the plurality of sets of uplink resources can be longer than a configured ULPI monitoring periodicity.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether a collision is to occur between a physical uplink control channel (PUCCH) transmission that includes a scheduling request (SR), and multiple physical uplink shared channel (PUSCH) transmissions in a slot. The UE may transmit, to a base station (BS), the PUCCH transmission or the multiple PUSCH transmissions based at least in part on determining whether the collision is to occur in the slot. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to methods and apparatus for coded-bit allocation for UCI segmentation. An exemplary method that may be performed by a wireless device generally includes generating coded bits of uplink control information (UCI) to be transmitted as one or more segments, applying one or more rules to ensure an integer number of bits are allocated to each of the one or more segments, and transmitting the UCI in the segments according to the assignment.
Abstract:
Various additional and alternative aspects are described herein. In some aspects, the present disclosure provides techniques for determining timing conditions for uplink control information (UCI) processing by a user equipment (UE).
Abstract:
The present methods and apparatus relate to wireless communications at either a user equipment (UE) or a network entity in a new radio communication system. The described aspects include receiving, via a communication channel, a scheduling grant from a transmitting wireless device, the scheduling grant including a Resource Indication Value (RIV) corresponding to an allocation of resource blocks (RBs) for communicating on the communication channel. The described aspects further include mapping the RIV to a constrained set of one or more RBs to identify allocated RBs, the constrained set of one or more RBs including a fewer number of RBs than a number of available RBs in a slot or transmission duration. The described aspects further include communicating, with the transmitting wireless device via the communication channel, using the allocated RBs from the constrained set of one or more RBs as signaled by the RIV.