Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to enhanced paging procedures for devices with limited communications resources, such as machine type communication (MTC) devices and enhanced or evolved MTC (eMTC) devices. An example method generally includes determining a set of subframes corresponding to a paging occasion for the UE to receive a paging message from a base station (BS), determining, within the set of subframes, at least one narrowband region for receiving the paging message, and monitoring for the paging message in the at least one narrowband region within the set of subframes.
Abstract:
In eMTC, channels may be bundled, using repetitions in multiple subframes. SPS and DRX for eMTC may not accommodate such repetitions, because repetitions for a bundled channel may fall only partially within a DRX ON duration. An apparatus addresses this problem by determining a DRX ON duration, determining a set of subframes carrying a bundled M-PDCCH candidate and determining that the DRX ON duration at least partially overlaps with the set of subframes of the bundled M-PDCCH. The apparatus then refrains from decoding the first bundled M-PDCCH candidate, decodes the first bundled M-PDCCH candidate, or extends the DRX ON duration to include the set of subframes entirely and decoding the first bundled M-PDCCH candidate carried in the set of subframes in the extended DRX ON duration. The apparatus may also determine DRX configuration parameters based on parameters of bundled channels, and handle invalid subframes for an SPS grant.
Abstract:
Techniques for uplink transmission management in a wireless communications system are described herein. An example method may include receiving an explicit uplink grant that indicates one or more implicit uplink grants. In an aspect, the example method may include performing a first clear channel assessment (CCA) in response to the explicit uplink grant in a first time slot. In another aspect, the example method may include, if the first CCA fails, sequentially performing one or more additional CCAs respectively in one or more time slots subsequent to the first time slot in response to the one or more implicit uplink grants, and transmitting the PDU over the unlicensed or shared spectrum and in a time slot subsequent to the time slot in which one of the one or more additional CCAs succeeds.
Abstract:
Certain aspects relate to methods and apparatus for conveying system information by a base station, comprising broadcasting a first system information common to each cell of a group of cells in an area and broadcasting a second system information that can vary between cells in the group of cells, wherein the second system information is broadcast more frequently than the first system information.
Abstract:
Various aspects described herein relate to managing ultra low latency (ULL) communications over a plurality of component carriers (CC). A configuration for aggregating a set of CCs can be received, wherein the set of CCs includes at least a primary cell and a secondary cell. Based on the received configuration, at least the primary cell can be communicated with for legacy communications, wherein the legacy communications are based on a first transmission time interval (TTI) having a first duration. Based on the received configuration, the primary cell and the secondary cell can be communicated with for ULL communications, wherein the ULL communications are based on a second TTI having a second duration that is less than the first duration.
Abstract:
Aspects of the present disclosure provide techniques for design of synchronization signals for narrowband operation, which can be used for stand-alone/in-band/guard-band deployment. An example method is provided for operations which may be performed by a base station (BS). The example method generally includes generating a primary synchronization signal (PSS) utilizing a first code sequence and a cover code applied to the first code sequence over a first number of symbols within one or more subframes, generating a secondary synchronization signal (SSS) based on a second code sequence over a second number of symbols within one or more subframes, and transmitting the PSS and the SSS in the first and second subframes to a first type of a user equipment (UE) that communicates on one or more narrowband regions of wider system bandwidth.
Abstract:
Neutral host networks may offer one or more different services via one or more different service providers, but user equipment (UE) may not necessarily know which services/service providers are offered by the neutral host networks. Accordingly, nodes of the neutral host networks (e.g., an access point, such as an evolved Node B (eNB)) may transmit service discovery information (SDI) to advertise the one or more services or service providers offered by the node and/or the neutral host network. Thus, a UE can receive the SDI via broadcast by the node, dedicated message from the node, etc., and can accordingly present at least a portion of the SDI or determine whether to connect to the node or another node of the neutral host network based at least in part on the SDI.
Abstract:
Aspects of the present disclosure provide techniques that may be used wireless network communication devices to support devices operating with extended discontinuous reception (eDRX). An exemplary method, performed by a BS, generally includes determining at least one paging hyper-frame for paging a user equipment (UE) based on an identification (ID) of the UE, the paging hyper-frame determined from a set of periodically occurring hyper-frames that each span a number of radio frames, receiving a request to page the UE, and transmitting a paging signal to the UE in at least one subframe within a radio frame of the paging hyper-frame. Another exemplary method, performed by a UE, generally includes determining at least one paging hyper-frame for monitoring for a paging signal from a base station (BS) based on an identification (ID) of the UE, the paging hyper-frame determined from a set of periodically occurring hyper-frames that each span a number of radio frames, and monitoring for the paging signal in at least one subframe within a radio frame of the paging hyper-frame.
Abstract:
Uplink reporting and logical channel prioritization in multiflow operation is described. In some embodiments, uplink reporting for multiflow operation utilizes bearer level splitting where the UE associates bearers or logical channel groups (LCGs) with cells for uplink reporting. In some embodiments, uplink reporting for multiflow operation utilizes packet level splitting where the UE groups buffers for all LCGs into a common pool for uplink reporting. In packet level splitting embodiments, the UE may perform uplink reporting based on the total amount of data available for transmission in the common buffer pool or by applying scaling coefficients associated with the serving cells. Some embodiments manage mapping of logical channel payloads to uplink grants for multiflow operation.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for secure connectionless uplink transmissions by a wireless device. Such techniques may provide for negotiation of an encryption mechanism as part of the setup for connectionless transmissions and subsequent secure connectionless uplink transmissions.