Abstract:
The present disclosure provides an example method and an apparatus for transmitting synchronization signals from an eNB with a different subcarrier spacing from rest of transmissions. That is, a primary synchronization signal (PSS), a secondary synchronization signal (SSS) may be transmitted using a first subcarrier spacing, a physical broadcast channel (PBCH), and/or a reference signal (RS) may be transmitted with a second subcarrier spacing, and other transmissions may be made using a third subcarrier spacing that is different from at least one of the first or second subcarrier spacing. Further, the order of symbols mapped to the synchronization signals may be reversed or otherwise modified within a transmission subframe.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may generate a scheduling request for transmission to a base station. The UE may pause a transmission of the scheduling request according to an overlap in time between a response window associated with the scheduling request and a scheduled tuneaway period of the UE. The UE may tune away from the base station during the tuneaway period. The UE may transmit the scheduling request after a completion of the tuneaway period according to the pausing.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless communications system may support techniques for using non-staggered reference signals to increase the efficiency of the system and reduce the complexity of channel estimation. A base station may schedule a transmission to a user equipment (UE) including pilot tones mapped to a first symbol and a second symbol. In some cases, the pilot tones on the first and second symbols may be non-contiguous, and the base station may scramble the pilot tones on the first and second symbols according to the same scrambling sequence. In other cases, the pilot tones on the first and second symbols may be contiguous, and the pilot tones may be scrambled according to the same or different scrambling sequences. These techniques may result in reduced complexity for interference estimation and channel estimation at a UE.
Abstract:
A method and apparatus for determining available downlink bandwidth are described. The described aspects may include estimating an available link capacity of a cell for a user equipment. The described aspects may include estimating an available fraction of cell resources for the user equipment. The described aspects may include estimating available bandwidth of the cell for the user equipment as a function of the estimated available link capacity and the estimated available fraction of cell resources. Available bandwidth may be estimated for a cell in a Universal Mobile Telecommunications System (UMTS) system when the user equipment is in an idle mode and/or a connected mode. Available bandwidth may be estimated for a cell in a Long Term Evolution (LTE) system when the user equipment is in an idle mode and/or a connected mode.
Abstract:
The present disclosure provides an example method and an apparatus for transmitting synchronization signals from an eNB with a different subcarrier spacing from rest of transmissions. That is, a primary synchronization signal (PSS), a secondary synchronization signal (SSS) may be transmitted using a first subcarrier spacing, a physical broadcast channel (PBCH), and/or a reference signal (RS) may be transmitted with a second subcarrier spacing, and other transmissions may be made using a third subcarrier spacing that is different from at least one of the first or second subcarrier spacing. Further, the order of symbols mapped to the synchronization signals may be reversed or otherwise modified within a transmission subframe.
Abstract:
The disclosure provides for detecting interference in wireless communications. A wireless devices may receive an interfering signal on a portion of unlicensed spectrum. The wireless device may perform cyclic autocorrelation on the interfering signal to determine one or both of a cyclic prefix length and a symbol period. The wireless device may determine a radio access technology of the interfering signal based on one or both of the cyclic prefix length and the symbol period. In an aspect, the wireless device may further transmit an interference report including information regarding the interfering signal including the cyclic prefix length, symbol period, identified radio access technology, or packet length.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless communications system may support techniques for using non-staggered reference signals to increase the efficiency of the system and reduce the complexity of channel estimation. A base station may schedule a transmission to a user equipment (UE) including pilot tones mapped to a first symbol and a second symbol. In some cases, the pilot tones on the first and second symbols may be non-contiguous, and the base station may scramble the pilot tones on the first and second symbols according to the same scrambling sequence. In other cases, the pilot tones on the first and second symbols may be contiguous, and the pilot tones may be scrambled according to the same or different scrambling sequences. These techniques may result in reduced complexity for interference estimation and channel estimation at a UE.