Abstract:
Various embodiments of methods and systems for hardware-based memory power management (“HMPM”) in a portable computing device (“PCD”) running secure and non-secure execution environments are disclosed. Hardware-based state machines are uniquely associated with, and under the control of, the non-secure execution environment, the secure execution environment and a virtual manager, respectively. The states of the state machines constitute votes by each of the execution environments and the virtual manager to control the power supply state to the memory component, such as a cache memory. The votes are monitored by a digital circuit that, based on a combination logic of the votes, generates an output signal to trigger a power management component to maintain, supply or remove power on a rail associated with the memory component. In this way, the power supply state to the memory component cannot be unilaterally changed by an application running in the non-secure execution environment.
Abstract:
Systems, methods, and computer programs are disclosed for providing secure access control to a graphics processing unit (GPU). One system includes a GPU, a plurality GPU programming interfaces, and a command processor. Each GPU programming interface is dynamically assigned to a different one of a plurality of security zones. Each GPU programming interface is configured to receive work orders issued by one or more applications associated with the corresponding security zone. The work orders comprise instructions to be executed by the GPU. The command processor is in communication with the plurality of GPU programming interfaces. The command processor is configured to control execution of the work orders received by the plurality of GPU programming interfaces using separate secure memory regions. Each secure memory region is allocated to one of the plurality of security zones.
Abstract:
A security apparatus and method are provided for performing a security algorithm that prevents unauthorized access to contents of a physical address (PA) that have been loaded into a storage element of the computer system as a result of performing a prediction algorithm during a hardware table walk that uses a predictor to predict a PA based on a virtual address (VA). When the predictor is enabled, it might be possible for a person with knowledge of the system to configure the predictor to cause contents stored at a PA of a secure portion of the main memory to be loaded into a register in the TLB. In this way, a person who should not have access to contents stored in secure portions of the main memory could indirectly gain unauthorized access to those contents. The apparatus and method prevent such unauthorized access to the contents by masking the contents under certain conditions.
Abstract:
Systems, methods, and computer programs are disclosed for optimizing headless virtual memory management in a system on chip (SoC) with global translation lookaside buffer shootdown. The SoC comprises an application processor configured to execute a headful virtual machine and one or more SoC processing devices configured to execute a corresponding headless virtual machine. The method comprises issuing a virtual machine mapping command with a headless virtual machine having a first virtual machine identifier. In response to the virtual machine mapping command, a current value stored in a hardware register in the application processor is saved. The first virtual machine identifier associated with the headless virtual machine is loaded into the hardware register. A translation lookaside buffer (TLB) invalidate command is issued while the first virtual machine identifier is loaded in the hardware register. Upon completion of translation lookaside buffer synchronization, the current value is restored to the hardware register.