Abstract:
Techniques for calibrating a receiver based on a local oscillator (LO) signal from another receiver are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes first and second local oscillator (LO) generators. The first LO generator generates a first LO signal used by a first receiver for frequency downconversion. The second LO generator generates a second LO signal used by a second receiver for frequency downconversion in a first operating mode. The second LO signal is used to generate a test signal for the first receiver in a second operating mode. The second LO signal may be provided as the test signal or may be amplitude modulated with a modulating signal to generate the test signal. The test signal may be used to calibrate residual sideband (RSB), second order input intercept point (IIP2), receive path gain, etc.
Abstract:
A wireless communication device configured for automatic calibration is described. The wireless communication device includes a testing load. The wireless communication device also includes a transceiver chip. The wireless communication device further includes a radio frequency connector switch that couples circuitry on the transceiver chip to one of the testing load, an external load and a radiating element.
Abstract:
Techniques for calibrating a receiver based on a local oscillator (LO) signal from another receiver are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) includes first and second local oscillator (LO) generators. The first LO generator generates a first LO signal used by a first receiver for frequency downconversion. The second LO generator generates a second LO signal used by a second receiver for frequency downconversion in a first operating mode. The second LO signal is used to generate a test signal for the first receiver in a second operating mode. The second LO signal may be provided as the test signal or may be amplitude modulated with a modulating signal to generate the test signal. The test signal may be used to calibrate residual sideband (RSB), second order input intercept point (IIP2), receive path gain, etc.
Abstract:
A wireless device for receiving wireless signals based on channel conditions is described. The wireless device includes a direct sampling path used when operating in a direct sampling mode. The wireless device also includes a zero intermediate frequency path used when operating in a normal sampling mode. The wireless device further includes a first switch coupling a filter module input to an input of the direct sampling path and an input of the zero intermediate frequency path. The wireless device also includes a second coupling a filter module output to an output of the direct sampling path and an output of the zero intermediate frequency path. The first switch and the second switch are configured to switch between the direct sampling path and the zero intermediate frequency path based on a received signal power.