Abstract:
Establishing a branch target instruction cache (BTIC) entry for subroutine returns to reduce pipeline bubbles, and related systems, methods, and computer-readable media are disclosed. In one embodiment, a method of establishing a BTIC entry includes detecting a subroutine call in an execution pipeline. In response, at least one instruction fetched sequential to the subroutine call is written as a branch target instruction in a BTIC entry for a subroutine return. A next instruction fetch address is calculated, and is written into a next instruction fetch address field in the BTIC entry. In this manner, the BTIC may provide correct branch target instruction and next instruction fetch address data for the subroutine return, even if the subroutine return is encountered for the first time or the subroutine is called from different calling locations.
Abstract:
Methods and apparatuses for optimizing hard-to-predict short forward branches. A method detects a forward conditional branch with at least one instruction between the forward conditional branch and forward conditional branch target. The method determines whether a first of the at least one instruction includes at least one of a conditional branch or a condition-code setter. If the first instruction does not have the at least one of a conditional branch or a condition-code setter, the first instruction is dynamically assigned an inverted condition to optimize a code path. The method determines if there is a next instruction between the forward conditional branch and its target. If there is, the method analyzes the next instruction. If there is no next instruction, the method executes the optimized code path. If the instruction includes the conditional branch or condition-code setter, it discards dynamic assignments and executes the detected forward conditional branch.
Abstract:
Establishing a branch target instruction cache (BTIC) entry for subroutine returns to reduce pipeline bubbles, and related systems, methods, and computer-readable media are disclosed. In one embodiment, a method of establishing a BTIC entry includes detecting a subroutine call in an execution pipeline. In response, at least one instruction fetched sequential to the subroutine call is written as a branch target instruction in a BTIC entry for a subroutine return. A next instruction fetch address is calculated, and is written into a next instruction fetch address field in the BTIC entry. In this manner, the BTIC may provide correct branch target instruction and next instruction fetch address data for the subroutine return, even if the subroutine return is encountered for the first time or the subroutine is called from different calling locations.