Abstract:
An apparatus include a first core processor, a second core processor, and a lock register coupled to the first core processor and to the second core processor. The apparatus further includes a shared structure responsive to the first core processor and to the second core processor. The shared structure is responsive to an unlock instruction issued by either the first core processor or the second core processor to send a signal to the lock register to reset a lock indication in the lock register.
Abstract:
An apparatus include a first core processor, a second core processor, and a lock register coupled to the first core processor and to the second core processor. The apparatus further includes a shared structure responsive to the first core processor and to the second core processor. The shared structure is responsive to an unlock instruction issued by either the first core processor or the second core processor to send a signal to the lock register to reset a lock indication in the lock register.
Abstract:
Dual-voltage domain memory buffers, and related systems and methods are disclosed. To reduce area needed for voltage level shifters for voltage level shifting, latch banks are provided in a voltage domain of memory buffer read circuitry, separate from the voltage domain of a write data input to the latch banks. A write data input voltage level shifter is disposed between the write data input and the latch banks to voltage level shift write data on the write data input to the voltage domain of the latch banks. In this manner, voltage level shifters are not required to voltage level shill the latch bank outputs, because the latch banks are in the voltage domain of the memory buffer read circuitry. In this manner, semiconductor area that would otherwise be needed for the voltage level shifters to voltage level shift latch bank outputs is not required.
Abstract:
Dual-voltage domain memory buffers, and related systems and methods are disclosed. To reduce area needed for voltage level shifters for voltage level shifting, latch banks are provided in a voltage domain of memory buffer read circuitry, separate from the voltage domain of a write data input to the latch banks. A write data input voltage level shifter is disposed between the write data input and the latch banks to voltage level shift write data on the write data input to the voltage domain of the latch banks. In this manner, voltage level shifters are not required to voltage level shill the latch bank outputs, because the latch banks are in the voltage domain of the memory buffer read circuitry. In this manner, semiconductor area that would otherwise be needed for the voltage level shifters to voltage level shift latch bank outputs is not required.