Abstract:
Certain aspects of the present disclosure provide methods and apparatus for generating local oscillator (LO) signals for multiple receive chains. One example circuit for generating first and second signals generally includes a first voltage controlled oscillator (VCO) configured to output the first signal at a first frequency and associated with a first receive chain for receiving a first carrier of an aggregated resource; and a second VCO configured to output the second signal at a second frequency and associated with a second receive chain for receiving a second carrier of the aggregated resource. The second frequency is different than the first frequency. In this manner, pulling or coupling between the two VCOs may be avoided, even if the two VCOs are implemented on the same radio frequency integrated circuit (RFIC).
Abstract:
Aspects of a reconfigurable frequency divider circuit are provided. A reconfigurable frequency divider can include a frequency divider that is configured to receive an input signal. The frequency divider can also include a delay circuit that is configured to receive a divided signal produced by the frequency divider. The frequency divider can also include a frequency multiplier that is configured to produce an output signal based on the delayed signal produced by the delay circuit, wherein the delay circuit is configured to receive the output signal.
Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus may be a regulator circuit. The regulator circuit includes a first voltage regulator to regulate a first input voltage to the first voltage regulator, the first voltage regulator including a P-type metal-oxide-semiconductor (PMOS), and a second voltage regulator to regulate a second input voltage to the second voltage regulator, the second voltage regulator including an N-type metal-oxide-semiconductor (NMOS). In an aspect, the first voltage regulator is coupled to the second voltage regulator.
Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus may be a regulator circuit. The regulator circuit includes a first voltage regulator to regulate a first input voltage to the first voltage regulator, the first voltage regulator including a P-type metal-oxide-semiconductor (PMOS), a second voltage regulator to regulate a second input voltage to the second voltage regulator, and a switch circuit to selectively activate at least one of the first voltage regulator or the second voltage regulator. In one aspect, the second voltage regulator includes an N-type metal-oxide-semiconductor (NMOS). In one aspect, the second voltage regulator comprises a two-stage operational transconductance amplifier (OTA) circuit. In an aspect, the first voltage regulator is coupled to the second voltage regulator.
Abstract:
Aspects of a reconfigurable varactor array for providing a capacitance to control an output frequency of a voltage-controlled oscillator are provided. The reconfigurable varactor array can be configured to provide a configurable capacitance. The reconfigurable varactor array can include a plurality of varactor cells connected in parallel. The reconfigurable varactor array can also include a control circuit configured to receive a control signal to select the configurable capacitance from the reconfigurable varactor array. The control circuit can include a plurality of switch groups. Each switch group can be separately connected to one varactor cell in the reconfigurable varactor array. The control signal from the control circuit can control operation of each switch group.