Abstract:
Adaptive hardware reconfiguration of configurable co-processor cores for hardware optimization of functionality blocks based on use case prediction, and related methods, circuits, and computer-readable media are disclosed. In one embodiment, an indication of one or more applications for possible execution is received. Execution probabilities for respective ones of the one or more applications are received. One or more mappings of the one or more applications to one or more functionality blocks is accessed, and a net benefit of hardware reconfiguration of one or more configurable co-processor cores of a multicore central processing unit for the one or more functionality blocks is calculated based on the execution probabilities and the mappings. An optimal hardware reconfiguration is determined based on a current hardware configuration and the calculated net benefit. The configurable co-processor cores are reconfigured based on the optimal hardware reconfiguration.
Abstract:
Aspects include computing devices, systems, and methods for implementing generating a cache memory configuration. A server may apply machine learning to context data. The server may determine a cache memory configuration relating to the context data for a cache memory of a computing device and predict execution of an application on the computing device. Aspects include computing devices, systems, and methods for implementing configuring a cache memory of the computing device. The computing device may classify a plurality of cache memory configurations, related to a predicted application execution, based on at least a hardware data threshold and a first hardware data. The computing device may select a first cache memory configuration from the plurality of cache memory configurations in response to the first cache memory configuration being classified for the first hardware data, and configuring the cache memory at runtime based on the first cache memory configuration.
Abstract:
A wireless mobile device includes a configurable co-processor core(s). The wireless mobile device also includes a multi-core central processing unit coupled to a memory and the configurable co-processor core(s). The multi-core central processing unit may select from a set of hardware accelerators according to a user's use pattern. The wireless mobile device also includes a hardware controller that reconfigures the configurable co-processor core(s) according to a selected hardware accelerator.
Abstract:
Adaptive hardware reconfiguration of configurable co-processor cores for hardware optimization of functionality blocks based on use case prediction, and related methods, circuits, and computer-readable media are disclosed. In one embodiment, an indication of one or more applications for possible execution is received. Execution probabilities for respective ones of the one or more applications are received. One or more mappings of the one or more applications to one or more functionality blocks is accessed, and a net benefit of hardware reconfiguration of one or more configurable co-processor cores of a multicore central processing unit for the one or more functionality blocks is calculated based on the execution probabilities and the mappings. An optimal hardware reconfiguration is determined based on a current hardware configuration and the calculated net benefit. The configurable co-processor cores are reconfigured based on the optimal hardware reconfiguration.
Abstract:
A wireless mobile device includes a configurable co-processor core(s). The wireless mobile device also includes a multi-core central processing unit coupled to a memory and the configurable co-processor core(s). The multi-core central processing unit may select from a set of hardware accelerators according to a user's use pattern. The wireless mobile device also includes a hardware controller that reconfigures the configurable co-processor core(s) according to a selected hardware accelerator.