Abstract:
Fast link training in embedded systems is disclosed. In one aspect, a host takes advantage of situations in which the host is coupled to one or more static devices through a communication bus. In particular, because the one or more devices are static, the host may be provided with information about the one or more devices before start up, so that when the host does perform a start up, the host already knows which device(s) to expect. Accordingly, the host may directly query the expected device(s), and after receipt of response(s) from the expected device(s), may begin link training the expected device(s). By using the provided information about the expected device(s) in this fashion, the host may bypass or skip an initial signal detection step used by conventional link training processes. Bypassing the initial signal detection step may save time, which in turn saves power.
Abstract:
Fast link training in embedded systems is disclosed. In one aspect, a host takes advantage of situations in which the host is coupled to one or more static devices through a communication bus. In particular, because the one or more devices are static, the host may be provided with information about the one or more devices before start up, so that when the host does perform a start up, the host already knows which device(s) to expect. Accordingly, the host may directly query the expected device(s), and after receipt of response(s) from the expected device(s), may begin link training the expected device(s). By using the provided information about the expected device(s) in this fashion, the host may bypass or skip an initial signal detection step used by conventional link training processes. Bypassing the initial signal detection step may save time, which in turn saves power.
Abstract:
In a Universal Serial Bus (USB) enumeration procedure, a USB Host questions a USB Device for its capabilities and chooses a set of capabilities that best fit. When the USB Device is enumerated, the USB Host may perform several time-consuming and power-consuming operations. However, when the USB Device is tightly or permanently coupled to the USB Host, part of the enumeration procedure may be redundant and can be eliminated. Accordingly, a method, an apparatus, and a computer program product for shortening enumeration of the USB Device tightly coupled to the USB Host are provided. The USB Host sends a request for a Device descriptor to the USB Device, receives a plurality of descriptors in a single transfer from the USB Device, and sets a configuration of the USB Device based on the received plurality of descriptors.
Abstract:
In a Universal Serial Bus (USB) enumeration procedure, a USB Host questions a USB Device for its capabilities and chooses a set of capabilities that best fit. When the USB Device is enumerated, the USB Host may perform several time-consuming and power-consuming operations. However, when the USB Device is tightly or permanently coupled to the USB Host, part of the enumeration procedure may be redundant and can be eliminated. Accordingly, a method, an apparatus, and a computer program product for shortening enumeration of the USB Device tightly coupled to the USB Host are provided. The USB Host sends a request for a Device descriptor to the USB Device, receives a plurality of descriptors in a single transfer from the USB Device, and sets a configuration of the USB Device based on the received plurality of descriptors.