Abstract:
Interferometric modulators and methods of making the same are disclosed. In one embodiment, an interferometric modulator includes an interferometric reflector having a first reflective surface, a second reflective surface, and an optical resonant layer defined by the first reflective surface and the second reflective surface. The interferometric reflector can be configured to transmit a certain spectrum of light at a transmission peak wavelength such that the interferometric modulator has a diminished reflectance of light at the transmission peak wavelength.
Abstract:
An integrated illumination apparatus includes a light injection portion having a first end for receiving light. The light injection portion supports propagation of light along the length of the light injection portion. Turning microstructure disposed on a first side of the light injection portion is configured to turn light incident on the first side and to direct light out a second opposite side of the light injection portion. A slit disposed along the length of the light injection portion forms an optical interface on the second opposite side of the light injection portion. The optical interface further transmits light turned by the turning microstructure. A light distribution portion is disposed with respect to the slit to receive the light transmitted through the slit. At least one bridge mechanically connects the light injection portion to the light distribution portion.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying high bit-depth images using spatial vector screening and/or temporal dithering on display devices including display elements that have multiple primary colors. The systems, methods and apparatus described herein are configured to assign one of the primary colors to a display element of the display device that corresponds to the image pixel based on a rank order and a partition index of an associated screen element of a stochastic screen associated with the display device or a portion thereof.
Abstract:
Various embodiments of a display device described herein include an optical propagation region, at least one optical loss structure, an optical isolation layer, and a plurality of display elements. The propagation region includes a light guide in which light is guided via total internal reflection and turning features configured to redirect the light out of the propagation region. The loss structure would disrupt the total internal reflection of at least some of the light guided within the propagation region if disposed directly adjacent thereto. The optical isolation layer includes a non-gaseous material between the propagation region and the loss structure, and is configured to increase an amount of light that is totally internal reflected in the propagation region. The plurality of display elements are positioned to receive the light redirected out of the propagation region. The loss structure is positioned between the plurality of display elements and the propagation region.
Abstract:
A illumination device comprises a light guide having a first end for receiving light and configured to support propagation of light along the length of the light guide. A turning microstructure is disposed on a first side of the light guide configured to turn light incident on the first side and to direct the light out a second opposite side of the light guide, wherein the turning microstructure comprises a plurality of indentations. A cover is physically coupled to the light guide and disposed over the turning microstructure. An interlayer is between the cover and the light guide, wherein the interlayer physically couples the cover to the light guide. A plurality of open regions is between the interlayer and the plurality of indentations. Various embodiments include methods of coupling the cover to the light guide while preserving open regions between the cover and plurality of indentations.