摘要:
A storage medium format is provided having a first band of a plurality of consecutive data storage tracks having user data stored thereto, a second band of a plurality of consecutive data storage tracks having other user data stored thereto, and a guard track medially disposed therebetween the first band and the second band and having system data stored thereto.
摘要:
A data storage medium and data storage system with improved efficiency of formatting are provided. One illustrative embodiment of the present invention pertains to a data storage medium. The data storage medium includes a first zone having servo information written with a first frequency, a second zone having servo information written with a second frequency, and a guard band disposed between the first zone and the second zone. The use of different frequencies in different zones contributes to optimizing the properties of the data storage medium, and the guard band contributes to optimizing the usage of the different zones.
摘要:
A storage medium format is provided having a first band of a plurality of consecutive data storage tracks having user data stored thereto, a second band of a plurality of consecutive data storage tracks having other user data stored thereto, and a guard track medially disposed therebetween the first band and the second band and having system data stored thereto.
摘要:
A data storage medium and data storage system with improved efficiency of formatting are provided. One illustrative embodiment of the present invention pertains to a data storage medium. The data storage medium includes a first zone having servo information written with a first frequency, a second zone having servo information written with a second frequency, and a guard band disposed between the first zone and the second zone. The use of different frequencies in different zones contributes to optimizing the properties of the data storage medium, and the guard band contributes to optimizing the usage of the different zones.
摘要:
One way to minimize full DC head-skew re-calibrations rendered necessary by changes in storage media drive operating temperature is to compensate for temperature-induced DC head-skew using a known relationship between temperature-induced DC head-skew and storage media operating temperature. More specifically, a first DC head-skew is measured at a first arbitrary temperature of the storage media drive. A second DC head-skew is measured at a second arbitrary temperature of the storage media drive. A DC head-skew correction factor is calculated using the first and second DC head-skews at the first and second arbitrary temperatures. When a multi-head storage media drive is powered-up for operation, a temperature sensor located in the storage media drive assembly measures the current storage media drive temperature. The head-skew correction factor is applied based on the measured temperature to correct the DC head-skew.
摘要:
Steps for isolating and correcting total written-in repeatable run-out error written into servo sectors of a disc drive include, determining a total repeatable run-out error value for each servo sector, isolating a repeatable error value component of the total written-in repeatable run-out error value for each servo sector, removing the repeatable error value component from total written-in repeatable run-out error value to provide a non-repeatable error value component of the total written-in repeatable run-out error value for each servo sector, providing both the repeatable and non-repeatable error value components to a processor for generation of compensation signals, and applying the compensation signals into a servo control circuit of control loop of the disc drive using compensation circuits to compensate for each component of the total written-in repeatable run-out error.
摘要:
A method and apparatus for compensating for errors in servo systems. An improved zero acceleration path (ZAP) correction technique is provided, wherein selected tracks of a data storage device are used for ZAP processing in order to reduce the overall time required to perform error compensation for a storage device. For a given selected track to be ZAPed, track profiles of adjoining tracks are used in addition to the track profile of the selected track as part of the ZAP correction determination for the selected track. Using adjacent track profiles as part of the ZAP correction determination assists in mitigating AC track squeeze issues that would otherwise occur when performing selective track ZAPing.
摘要:
A method and apparatus for compensating for written-in repeatable runout in a disc drive is provided. Compensation values are determined through an iterative learning process in which parameters of the learning process such as learning gain, servo loop gain, etc. are functions of the iteration number. The learning process also employs a nominal double integrator model of an actuator of the disc storage system. The learning process is also a function of a zero-phase low-pass filter.
摘要:
A disc storage system is provided which includes a servo control loop for compensating for repeatable runout. Repeatable runout is compensated using table entries of the form Comp Value(k+1)=Comp Value(k)+K&PHgr;(z)RRO(k), where K is a learning rate; k is iteration number &PHgr;(z) is a filter and RRO(k) is the repeatable runout error. Further, &rgr;(j&ohgr;)=|1−K&PHgr;(j&ohgr;)/(1+PC(j&ohgr;)|
摘要:
An apparatus and method for improving servo loop performance in a disc drive storage system are provided. The servo loop includes a voice coil motor actuator that moves the head in response to a received servo control signal. A sensor, located in the head, senses servo information located on the disc and produces a servo signal therefrom. The servo signal is combined with a reference signal to produce a position error signal. A servo controller receives the position error signal and responsively produces the servo control signal. The servo controller includes a drive signal generator that receives the position error signal and responsively produces a driving energy signal. A vibration damping circuit receives the driving energy signal and responsively produces the servo control signal. A real-time adaptive loop shaping circuit, included in the servo loop, detects vibrations in the position error signal and responsively adjusts at least one parameter of a transfer function of the vibration damping circuit to reduce vibrations at different frequencies in the driving energy signal.