摘要:
Progressive cut interactive object segmentation is described. In one implementation, a system analyzes strokes input by the user during iterative image segmentation in order to model the user's intention for refining segmentation. In the user intention model, the color of each stroke indicates the user's expectation of pixel label change to foreground or background, the location of the stroke indicates the user's region of interest, and the position of the stroke relative to a previous segmentation boundary indicates a segmentation error that the user intends to refine. Overexpansion of pixel label change is controlled by penalizing change outside the user's region of interest while overshrinkage is controlled by modeling the image as an eroded graph. In each iteration, energy consisting of a color term, a contrast term, and a user intention term is minimized to obtain a segmentation map.
摘要:
Salience-preserving image fusion is described. In one aspect, multi-channel images are fused into a single image. The fusing operations are based on importance-weighted gradients. The importance weighted gradients are measured using respective salience maps for each channel in the multi-channel images.
摘要:
Salience-preserving image fusion is described. In one aspect, multi-channel images are fused into a single image. The fusing operations are based on importance-weighted gradients. The importance weighted gradients are measured using respective salience maps for each channel in the multi-channel images.
摘要:
Directed graph embedding is described. In one implementation, a system explores the link structure of a directed graph and embeds the vertices of the directed graph into a vector space while preserving affinities that are present among vertices of the directed graph. Such an embedded vector space facilitates general data analysis of the information in the directed graph. Optimal embedding can be achieved by measuring local affinities among vertices via transition probabilities between the vertices, based on a stationary distribution of Markov random walks through the directed graph. For classifying linked web pages represented by a directed graph, the system can train a support vector machine (SVM) classifier, which can operate in a user-selectable number of dimensions.
摘要:
A Bayesian competitive model integrated with a generative classifier for unspecific person verification is described. In one aspect, a competitive measure for verification of an unspecific person is calculated using a discriminative classifier. The discriminative classifier is based on a Bayesian competitive model that is adaptable to unknown new classes. The Bayesian competitive model is integrated with a generative verification in view of a set of confidence criteria to make a decision regarding verification of the unspecific person.
摘要:
The handling of occlusions in stereo imaging is disclosed. In one implementation, an association between a discontinuity in one stereo image and an occlusion in a second stereo image is utilized. In such an implementation, the first and second stereo images are segmented. A mapping of a discontinuity within the second stereo image is used to form at least part of a boundary of an occlusion in the first stereo image. The mapped discontinuity is found at a boundary between two segments in the second stereo image, and once mapped, divides a segment in the first stereo image into two patches. An energy calculation is made in an iterative manner, alternating with changes to a solution with the disparities and occlusions of the patches. Upon minimization, disparities and occlusions at the patch and pixel level are available.
摘要:
A search includes comparing a query image provided by a user to a plurality of stored images of faces stored in a stored image database, and determining a similarity of the query image to the plurality of stored images. One or more resultant images of faces, selected from among the stored images, are displayed to the user based on the determined similarity of the stored images to the query image provided by the user. The resultant images are displayed based at least in part on one or more facial features.
摘要:
Systems and methods are described for learning visual object cutout from a single example. In one implementation, an exemplary system determines the color context near each block in a model image to create an appearance model. The system also learns color sequences that occur across visual edges in the model image to create an edge profile model. The exemplary system then infers segmentation boundaries in unknown images based on the appearance model and edge profile model. In one implementation, the exemplary system minimizes the energy in a graph-cut model where the appearance model is used for data energy and the edge profile is used to modulate edges. The system is not limited to images with nearly identical foregrounds or backgrounds. Some variations in scale, rotation, and viewpoint are allowed.
摘要:
Systems and methods of segmenting images are disclosed. The similarity of images in a set of images is compared. A group of images is selected from the set of images. The images in the group of images are selected based on compared similarities among the images. An informative image is selected from the group of images. User-defined semantic information of the informative image is received. The group of images is modeled as a graph. Each image in the group of images denotes a node in the graph. Edges of the graph denote a foreground or background relationship between images. One or more images in the group of images may be automatically segmented by propagating semantic information of the informative image to images in the group having a graph node corresponding to the informative image. Segmentation results can be refined according to user provided image semantics.
摘要:
Exemplary systems and methods use micro-structure modeling of an image for extracting image features. The micro-structure in an image is modeled as a Markov Random Field, and the model parameters are learned from training images. Micro-patterns adaptively designed from the modeled micro-structure capture spatial contexts of the image. In one implementation, a series of micro-patterns based on the modeled micro-structure can be automatically designed for each block of the image, providing improved feature extraction and recognition because of adaptability to various images, various pixel attributes, and various sites within an image.