Abstract:
Methods and systems disclosed provide for clear channel assessment of first and second communication channels. In one aspect, a first primary channel has a first frequency spectrum bandwidth and a second primary channel has a second frequency spectrum bandwidth including the first frequency spectrum bandwidth. A method may include performing a first back-off procedure based on whether the first primary channel is idle if a transmission bandwidth for a wireless message is the first frequency spectrum bandwidth, performing a second back-off procedure based on whether the second primary channel is idle if the transmission bandwidth for the wireless message is greater than the first frequency spectrum bandwidth, and transmitting the wireless message based on a completion of the performed back off procedure.
Abstract:
One aspect disclosed is a method in a wireless communications system including a first primary channel having a first frequency spectrum bandwidth and a second primary channel having a second frequency spectrum bandwidth, wherein the second frequency spectrum bandwidth includes the first frequency spectrum bandwidth. The method includes performing a first and a second back-off procedure at least partially in parallel, the first back-off procedure based on whether the first primary channel is idle, and the second back-off procedure based on whether the second primary channel is idle, and transmitting a wireless message based on whether the first or the second back-off procedure completes first.
Abstract:
A method and system are disclosed that allow for the control of transmission characteristics associated with an exchange of protocol data units (PDUs) between a first wireless device and a second wireless device. The first wireless device determines a recovery time period and transmits the recovery time period to the second wireless device. The second wireless device may determine a time when the first wireless device enters the sleep state, wait for the recovery time period after the determined time, and then transmit a number of PDUs to the first wireless device after an expiration of the recovery time period.
Abstract:
Systems, methods, and devices to communicate in a white space are described herein. In some aspects, wireless communication transmitted in the white space authorizes an initial transmission by a device. The wireless communication may include power information for determining a power at which to transmit the initial transmission. The initial transmission may be used to request information identifying one or more channels in the white space available for transmitting data. In some aspects, a device for wireless communication is disclosed. The device may include a data interleaver with at least a first mode and a second mode. The modes may correspond to transmitting using either two or four channels of the white space.
Abstract:
Systems and methods of performing communication via a sub-1 gigahertz wireless network are disclosed. Values of one or more inter-frame spacing parameters for use in communication via the sub-1 gigahertz wireless network are also defined. The parameters may include a short inter-frame spacing (SIFS) time of 160 microseconds (μs). The parameters may also include a clear channel assessment (CCA) time of 40 μs. Additional parameters, such as air propagation time are also defined (e.g., for inclusion into a standard, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11ah).
Abstract:
Systems and methods for determining primary channel availability are disclosed. One aspect is a method in a wireless communications system including a first primary channel having first and second frequency spectrum bandwidths. The second frequency spectrum bandwidth includes the first frequency spectrum bandwidth. The method includes determining whether a first preamble has been detected on the second primary channel during a first threshold period of time, determining whether a second preamble has been detected on the first primary channel during a second threshold period of time, determining whether a guard interval has been detected on the second primary channel during a third threshold period of time, determining whether the second primary channel is idle based at least in part on detection of the first preamble, the second preamble and the guard interval, and transmitting a wireless message based at least in part on whether the second primary channel is idle.
Abstract:
Systems and methods for determining primary channel availability are disclosed. One aspect is a method in a wireless communications system including a first primary channel having first and second frequency spectrum bandwidths. The second frequency spectrum bandwidth includes the first frequency spectrum bandwidth. The method includes determining whether a first preamble has been detected on the second primary channel during a first threshold period of time, determining whether a second preamble has been detected on the first primary channel during a second threshold period of time, determining whether a guard interval has been detected on the second primary channel during a third threshold period of time, determining whether the second primary channel is idle based at least in part on detection of the first preamble, the second preamble and the guard interval, and transmitting a wireless message based at least in part on whether the second primary channel is idle.
Abstract:
Systems and methods of performing communication via a sub-1 gigahertz wireless network are disclosed. Values of one or more inter-frame spacing parameters for use in communication via the sub-1 gigahertz wireless network are also defined. The parameters may include a short inter-frame spacing (SIFS) time of 160 microseconds (μs). The parameters may also include a clear channel assessment (CCA) time of 40 μs. Additional parameters, such as air propagation time are also defined (e.g., for inclusion into a standard, such as Institute of Electrical and Electronics Engineers (IEEE) 802.11ah).
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless device may perform a listen-before-talk (LBT) procedure for a narrowband communication that provides time and frequency synchronization and/or scheduling information for an ultra-wideband (UWB) communication. The wireless device may transmit the narrowband communication in response to the LBT procedure being successful. The wireless device may transmit the UWB communication based at least in part on the time and frequency synchronization and/or scheduling information. Numerous other aspects are described.
Abstract:
A user equipment (UE) includes a first communication component configured to use a first frequency band, such as ultra-wide band (UWB), and a second communication component configured to use an intermediate frequency (IF) band that overlaps with the UWB band, such as an IF millimeter wave (mmWave) band. The second communication component conducts an IF signal along an internal signal conduction line that may interfere with UWB processing. A processor of the UE is configured to detect an indication of such interference, and, in response to the indication of interference, control the second communication component to adjust a characteristic of the IF band signal to mitigate the interference, such as by reducing its signal strength. The amount by which the IF band signal strength is reduced may be controlled to achieve a desired tradeoff between various performance metrics, such as power consumption and quality of service.