摘要:
Various embodiments provide methods implemented in a mobile communication device (e.g., a multi-RAT communication device) for maintaining at least one separate RGS value for each of a plurality of RATs operating on the mobile communication device. Specifically, a device processor on the mobile communication device (e.g., a crystal oscillator manager) may maintain a separate, up-to-date RGS value for each of the plurality of RATs and may associate each of the plurality of RATs with their respective RGS values. By keeping track of the plurality of RATs' respective RGS values, the device processor may ensure that an appropriate RGS value is used to facilitate each RAT's individual operations, such as acquisition/re-acquisition operations, sleep scheduling calculations, and handover/inter-RAT measurement operations. As a result, various embodiments may improve the performance of each RAT and the overall performance of the mobile communication device.
摘要:
Methods, systems, and devices for wireless communications are described. A device may identify modes from a set of modes in which at least one modem functional block of a set of modem functional blocks of a chipset operates during a portion of a time interval. Each modem functional block may include a set of units classified to have a power response that satisfies a power trend metric for at least one mode. The device may select power calculation equations from a set of power calculation equations based on the set of multiple modes, calculate an power consumption level for the chipset for the time interval based on the selected power calculation equations and a proportion of the time interval a respective multiple modem functional block of the set of modem functional blocks operates in a respective mode of the set of multiple modes.
摘要:
Various embodiments provide methods implemented in a mobile communication device (e.g., a multi-RAT communication device) for maintaining at least one separate RGS value for each of a plurality of RATs operating on the mobile communication device. Specifically, a device processor on the mobile communication device (e.g., a crystal oscillator manager) may maintain a separate, up-to-date RGS value for each of the plurality of RATs and may associate each of the plurality of RATs with their respective RGS values. By keeping track of the plurality of RATs' respective RGS values, the device processor may ensure that an appropriate RGS value is used to facilitate each RAT's individual operations, such as acquisition/re-acquisition operations, sleep scheduling calculations, and handover/inter-RAT measurement operations. As a result, various embodiments may improve the performance of each RAT and the overall performance of the mobile communication device.
摘要:
A user equipment (UE) includes a first communication component configured to use a first frequency band, such as ultra-wide band (UWB), and a second communication component configured to use an intermediate frequency (IF) band that overlaps with the UWB band, such as an IF millimeter wave (mmWave) band. The second communication component conducts an IF signal along an internal signal conduction line that may interfere with UWB processing. A processor of the UE is configured to detect an indication of such interference, and, in response to the indication of interference, control the second communication component to adjust a characteristic of the IF band signal to mitigate the interference, such as by reducing its signal strength. The amount by which the IF band signal strength is reduced may be controlled to achieve a desired tradeoff between various performance metrics, such as power consumption and quality of service.
摘要:
Systems, methods, and apparatus are described that provide for communicating coexistence messages over a multi-drop serial bus. A method performed at a device coupled to a serial bus includes receiving first coexistence information directed to a first device coupled to the serial bus, generating a first coexistence message representative of the first coexistence information, converting the first coexistence message to obtain a first datagram including the first coexistence information, and transmitting the first datagram to the first device over the serial bus. The first coexistence message may be configured for communication through a point-to-point data link. The first datagram may be configured according to a first protocol associated with the serial bus.
摘要:
Certain aspects of the present disclosure provide techniques for protecting shared low noise amplifiers by limiting transmission power. A method that may be performed by a user equipment (UE) includes determining that a transmission by the UE on a frequency band via a first radio access technology (RAT) overlaps in time with a period that the UE is configured to receive on the frequency band via a second RAT; and limiting transmission power on the first RAT during the period.
摘要:
A method, an apparatus, a receiver component, and a computer program product for wireless communication are provided. The apparatus may receive a first portion of a communication from a transmitter component via a wireless coexistence interface between the receiver component and the transmitter component; determine at least one of a radio access technology (RAT) identifier or a transmit operation based at least in part on the first portion of the communication; and at least one of: process a second portion of the communication based at least in part on the RAT identifier; or perform the transmit operation. Numerous other aspects are provided.
摘要:
Various embodiments provide methods, devices, and non-transitory processor-readable storage media for avoiding coexistence interference between radio access technologies (RATs) operating on a multi-active communication device. Various embodiments provide methods, devices, and non-transitory processor-readable storage media to leverage an ability of a multi-active communication device to manage two RATs and/or subscriptions to protect on-demand traffic service performance, such as Multimedia Messaging Service (“MMS”) service performance, when inter-RAT coexistence interference is occurring, or is likely to occur, between an on-demand traffic service, such as a MMS service, and a data service. In some embodiments, an on-demand traffic service may be a bursty on-demand traffic service.