Abstract:
Disclosed herein are genetically modified rodent animals comprising in their genome a nucleic acid which comprises a nucleotide sequence encoding a human CR1 polypeptide, wherein the rodent animals display a human-like expression of the human CR1 polypeptide. Also disclosed herein are isolated rodent cells including rodent embryonic stem cells, and rodent tissues. Further disclosed are nucleic acid vectors and methods for making the genetically modified rodent animals, as well as methods of using such genetically modified rodent animals for screening and testing candidate compounds.
Abstract:
Methods are disclosed for treating osteoarthritis in a human subject in need thereof, comprising administering to the subject a therapeutically effective amount of an anti-human NGF antibody, or antigen-binding fragment thereof, wherein at least one symptom associated with osteoarthritis is prevented, ameliorated or improved.
Abstract:
Genetically modified non-human animals and methods and compositions for making and using them are provided, wherein the genetic modification comprises (a) a deletion in an immunoglobulin constant region CH1 gene (optionally a deletion in a hinge region) of a heavy chain constant region gene sequence, and (b) replacement of one or all endogenous VH, DH and JH gene segments with at least one unrearranged light chain variable (VL) gene segment and at least one unrearranged light chain joining (JL) gene segment capable of recombining to form a rearranged light chain variable region (VL/JL) nucleotide sequence operably linked to the heavy chain constant region gene sequence comprising a deletion in the CH1 gene and/or insertion of a genetically engineered single rearranged light chain, wherein the mouse is capable of expressing a functional IgM, single domain antigen binding proteins, e.g., VL-single domain binding proteins, and a genetically engineered rearranged light chain.
Abstract:
The present invention provides antibodies and antigen-binding fragments thereof that specifically bind to cells expressing acid-sensing ion channel-1 (ASIC1). According to certain embodiments of the invention, the antibodies inhibit acid-induced, ASIC1-mediated ion currents in cells expressing human ASIC1. The antibodies of the invention are useful for the treatment of pain, including pain associated with surgical intervention and various diseases and disorders.
Abstract:
Disclosed herein are genetically modified rodent animals comprising in their genome a nucleic acid which comprises a nucleotide sequence encoding a human CR1 polypeptide, wherein the rodent animals display a human-like expression of the human CR1 polypeptide. Also disclosed herein are isolated rodent cells including rodent embryonic stem cells, and rodent tissues. Further disclosed are nucleic acid vectors and methods for making the genetically modified rodent animals, as well as methods of using such genetically modified rodent animals for screening and testing candidate compounds.
Abstract:
Methods are disclosed for treating osteoarthritis in a human subject in need thereof, comprising administering to the subject a therapeutically effective amount of an anti-human NGF antibody, or antigen-binding fragment thereof, wherein at least one symptom associated with osteoarthritis is prevented, ameliorated or improved.
Abstract:
A genetically modified non-human animal is provided, wherein the non-human animal expresses an antibody repertoire capable of pH dependent binding to antigens upon immunization. A genetically modified non-human animal is provided that expresses human immunoglobulin light chain variable domains derived from a limited repertoire of human immunoglobulin light chain variable gene segments that comprise histidine modifications in their germline sequence. Methods of making non-human animals that express antibodies comprising histidine residues encoded by histidine codons introduced into immunoglobulin light chain nucleotide sequences are provided.
Abstract:
The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I and MHC II polypeptides and/or human or humanized β2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
Abstract:
The present invention provides antibodies and antigen-binding fragments thereof that specifically bind to cells expressing acid-sensing ion channel-1 (ASIC1). According to certain embodiments of the invention, the antibodies inhibit acid-induced, ASIC1-mediated ion currents in cells expressing human ASIC1. According to certain embodiments, the antibodies of the invention are selective for ASIC1 and do not bind other acid-sensing ion channels in the absence of ASIC1. The antibodies of the invention are useful for the treatment of pain, including pain associated with surgical intervention and various diseases and disorders.
Abstract:
Methods are disclosed for treating osteoarthritis in a human subject in need thereof, comprising administering to the subject a therapeutically effective amount of an anti-human NGF antibody, or antigen-binding fragment thereof, wherein at least one symptom associated with osteoarthritis is prevented, ameliorated or improved.