Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.
Abstract:
A voltage converting controller, in which when an output current increases from a first current value to a second current value, the voltage converting controller temporarily sets a control frequency to a maximum frequency value; and after a period of time, sets the control frequency to a target control frequency corresponding to the second current value. In addition, when the output current increases from the first current value to the second current value, the voltage converting controller temporarily sets a secondary-side output voltage to an transient output value; and after a period of time, sets a steady state value of the secondary-side output voltage to an output voltage steady state value corresponding to the second current value.
Abstract:
A voltage converting controller, in which when an output current increases from a first current value to a second current value, the voltage converting controller temporarily sets a control frequency to a maximum frequency value; and after a period of time, sets the control frequency to a target control frequency corresponding to the second current value. In addition, when the output current increases from the first current value to the second current value, the voltage converting controller temporarily sets a secondary-side output voltage to an transient output value; and after a period of time, sets a steady state value of the secondary-side output voltage to an output voltage steady state value corresponding to the second current value.
Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.
Abstract:
A voltage converter circuit, includes: a power switch for generating a pulse-width-modulation (PWM) signal to drive a current load, wherein the PWM signal toggles between a first level and a second level; a sensing pin, receiving a first sensing signal when the PWM signal is at the first level, and receiving a second sensing signal when the PWM signal is at the second level; a parameter sampling and setting unit, having an input terminal coupling to the sensing pin, generating a default current or a default voltage on the sensing pin and sampling the second sensing signal to generate a sampling signal when the PWM signal is at the second level, and holding the sampling signal to set a parameter of the voltage converter circuit when the PWM signal is at the first level.