Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.
Abstract:
A voltage converter circuit, includes: a power switch for generating a pulse-width-modulation (PWM) signal to drive a current load, wherein the PWM signal toggles between a first level and a second level; a sensing pin, receiving a first sensing signal when the PWM signal is at the first level, and receiving a second sensing signal when the PWM signal is at the second level; a parameter sampling and setting unit, having an input terminal coupling to the sensing pin, generating a default current or a default voltage on the sensing pin and sampling the second sensing signal to generate a sampling signal when the PWM signal is at the second level, and holding the sampling signal to set a parameter of the voltage converter circuit when the PWM signal is at the first level.
Abstract:
A power off delay circuit includes a switch connected between an external power input terminal and an internal power supply terminal, a capacitor connected to the internal power supply terminal, and a hysteresis comparator to switch the switch according to the voltages of the external power input terminal and the internal power supply terminal. During on-time of the switch, the external power input terminal is connected to the internal power supply terminal and the capacitor can be charged by the external power source. When the switch is off, the capacitor provides electric power for an internal circuit. Application of the power off delay circuit to an audio system may eliminate the turn-off pops of the audio system.
Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
An AC-to-DC power converting apparatus includes a power factor correction circuit generating a DC output voltage based on a rectified voltage obtained through rectifying an AC input voltage and on a PWM signal generated based on an adjustment current and a predetermined ramp signal. A multiplier-divider circuit includes: a ramp generating unit generating a ramp signal based on a clock signal and on a first detection voltage associated with the rectified voltage; a control unit generating a control signal based on the clock signal, the ramp signal, and a detection voltage generated based on the DC output voltage; and an output unit generating an adjustment signal based on an input signal associated with the rectified voltage and the control signal.
Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.
Abstract:
A soft-start switching power converter includes a voltage converting circuit and a soft-start circuit. The voltage converting circuit includes a transformer, and a first switch which includes a first terminal connected to the transformer, a second terminal providing a trigger signal, and a control terminal receiving a control signal, and which is controlled to switch between conduction and nonconduction, such that the transformer generates a feedback voltage. The soft-start circuit receives the trigger signal, generates the control signal according to the trigger signal, and determines whether or not to clamp the control signal at a preset voltage level based on the trigger signal.
Abstract:
A light emitting system includes a series connection of a light emitting unit and a variable current source, and a voltage conversion device that includes a rectifier circuit and an output circuit. The rectifier circuit rectifies an AC voltage to generate a rectified voltage across a first rectifier output coupled to one end of the series connection of the light emitting unit and the variable current source, and a second rectifier output. The output circuit is coupled between the second rectifier output and another end of the series connection of the light emitting unit and the variable current source, and is configured to generate a direct-current (DC) output voltage.
Abstract:
A switching power converting apparatus is capable of converting an input voltage to an output voltage, and includes a transformer, a primary side control module, and a secondary side control module. The secondary side control module utilizes voltage clamping techniques or current-drawing techniques to stop self-excited conversion from the input voltage to the output voltage when the output voltage is greater than a predetermined target voltage, or utilizes a non-self-excited conversion architecture.