Abstract:
A resonant flyback power converter includes: a first transistor and a second transistor which are configured to switch a transformer and a resonant capacitor for generating an output voltage; and a switching control circuit generating first and second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal magnetizes the transformer. During a DCM (discontinuous conduction mode) operation, the second driving signal includes a resonant pulse for demagnetizing the transformer and a ZVS (zero voltage switching) pulse for achieving ZVS of the first transistor. The resonant pulse is skipped when the output voltage is lower than a low-voltage threshold.
Abstract:
The present invention discloses a flyback converter, a primary side control circuit therein, and a control method thereof. The flyback converter includes: a transformer circuit, a power switch circuit, a primary side control circuit, a synchronous rectification (SR) switch, and a synchronous rectification (SR) control circuit. When a feedback signal indicates that a difference between a target output voltage and an actual output voltage increases, the primary side control circuit increases an operation frequency of an operation signal by step-wisely reducing a cycle period of the operation signal in response to the increase of the difference, wherein the cycle period of the operation signal is reduced by a predetermined unit of time in each step, such that the cycle period of the operation signal is a step function of the increase of the difference.
Abstract:
A switching control circuit for use in controlling a resonant flyback power converter generates a first driving signal and a second driving signal. The first driving signal is configured to turn on the first transistor to generate a first current to magnetize a transformer and charge a resonant capacitor. The transformer and charge a resonant capacitor are connected in series. The second driving signal is configured to turn on the second transistor to generate a second current to discharge the resonant capacitor. During a power-on period of the resonant flyback power converter, the second driving signal includes a plurality of short-pulses configured to turn on the second transistor for discharging the resonant capacitor. A pulse-width of the short-pulses of the second driving signal is short to an extent that the second current does not exceed a current limit threshold.
Abstract:
A power path switch circuit includes: a power transistor unit including: a first vertical double-diffused metal oxide semiconductor (VDMOS) device, wherein a first current outflow end of the first VDMOS device is coupled to an output end of a power path; and a second VDMOS device, wherein a first current inflow end of the first VDMOS device and a second current inflow end of the second VDMOS device are coupled with a supply end of the power path; and a voltage locking circuit coupled to the first current outflow end and the second current outflow end, for locking a voltage at the second current outflow end to a voltage at the first current outflow end, so that there is a predetermined ratio between a first conductive current flowing through the first VDMOS device and a second conductive current flowing through the second VDMOS device.
Abstract:
A power path switch circuit includes: a power transistor unit including: a first vertical double-diffused metal oxide semiconductor (VDMOS) device, wherein a first current outflow end of the first VDMOS device is coupled to an output end of a power path; and a second VDMOS device, wherein a first current inflow end of the first VDMOS device and a second current inflow end of the second VDMOS device are coupled with a supply end of the power path; and a voltage locking circuit coupled to the first current outflow end and the second current outflow end, for locking a voltage at the second current outflow end to a voltage at the first current outflow end, so that there is a predetermined ratio between a first conductive current flowing through the first VDMOS device and a second conductive current flowing through the second VDMOS device.
Abstract:
A current sensing circuit having self-calibration includes two leads, a sensing element having a sensing resistance, and a sensing and calibration circuit. The sensing and calibration circuit senses and calibrates a sensing voltage of the sensing element, and senses a sensing current through the sensing element according to the sensing resistance and the sensing voltage, to generate a current sensing output signal. The sensing and calibration circuit includes two pads, a V2I circuit, a current mirror circuit and an I2V circuit. The sensing element has a first temperature coefficient (TC). The TC and/or the resistance of an adjusting resistor in the V2I circuit and an adjusting resistor in the I2V circuit are determined according to the first TC, such that the TC of the current sensing output signal is equal to 0.
Abstract:
A circuit of a resonant power converter comprising: a high-side switch and a low-side switch, coupled to form a half-bridge switching circuit which is configured to switch a transformer for generating an output voltage; a high-side drive circuit, generating a high-side drive signal coupled to drive the high-side switch in response to a high-side control signal; a bias voltage, coupled to a bootstrap diode and a bootstrap capacitor providing a power source from the bootstrap capacitor for the high-side drive circuit; wherein the high-side drive circuit generates the high-side drive signal with a fast slew rate to turn on the high-side switch when the high-side switch is to be turned on with soft-switching; the high-side drive circuit generates the high-side drive signal with a slow slew rate to turn on the high-side switch when the high-side switch is to be turned on without soft-switching.
Abstract:
A resonant asymmetrical half-bridge flyback power converter includes: a first transistor and a second transistor switching a transformer coupled to a capacitor for generating an output power; a voltage divider coupled to an auxiliary winding of the transformer; a differential sensing circuit which includes a first terminal and a second terminal coupled to the voltage divider to sense an auxiliary signal generated by the auxiliary winding for generating a peak signal and a demagnetization-time signal; and a PWM control circuit configured to generate a first PWM signal and a second PWM signal in accordance with the peak signal and the demagnetization-time signal, for controlling the first transistor and the second transistor respectively; wherein a period of an enabling state of the demagnetization-time signal is correlated to the output power level; wherein the peak signal is related to a quasi-resonance of the transformer after the transformer is demagnetized.
Abstract:
A resonant flyback power converter includes: a first transistor and a second transistor which are configured to switch a transformer and a resonant capacitor for generating an output voltage; and a switching control circuit generating first and second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal magnetizes the transformer. The second driving signal includes a resonant pulse having a resonant pulse width and a ZVS pulse during the DCM operation. The resonant pulse is configured to demagnetize the transformer. The resonant pulse has a first minimum resonant period for a first level of the output load and a second minimum resonant period for a second level of the output load. The first level is higher than the second level and the second minimum resonant period is shorter than the first minimum resonant period.
Abstract:
A current sensing circuit having self-calibration includes two leads, a sensing element having a sensing resistance, and a sensing and calibration circuit. The sensing and calibration circuit senses and calibrates a sensing voltage of the sensing element, and senses a sensing current through the sensing element according to the sensing resistance and the sensing voltage, to generate a current sensing output signal. The sensing and calibration circuit includes two pads, a V2I circuit, a current mirror circuit and an I2V circuit. The sensing element has a first temperature coefficient (TC). The TC and/or the resistance of an adjusting resistor in the V2I circuit and an adjusting resistor in the I2V circuit are determined according to the first TC, such that the TC of the current sensing output signal is equal to 0.