Abstract:
The present invention discloses an event detection method for waking up a portable electronic device and an action sensor using same. The event detection method includes the steps of: under a normal operation mode, sensing action events by the action sensor with a first data sensing frequency, wherein the action sensor operates by a normal current to detect the action events; entering into a sleep mode; under the sleep mode, detecting a wake-up event by the action sensor with a second data sensing frequency, wherein the action sensor operates by a weak current to detect the wake-up event, wherein the weak current is smaller than the normal current, and the second data sensing frequency is not higher than the first data sensing frequency; and returning to the normal operation mode when the wake-up event is detected.
Abstract:
The present invention discloses an event detection method for waking up a portable electronic device and an action sensor using same. The event detection method includes the steps of: under a normal operation mode, sensing action events by the action sensor with a first data sensing frequency, wherein the action sensor operates by a normal current to detect the action events; entering into a sleep mode; under the sleep mode, detecting a wake-up event by the action sensor with a second data sensing frequency, wherein the action sensor operates by a weak current to detect the wake-up event, wherein the weak current is smaller than the normal current, and the second data sensing frequency is not higher than the first data sensing frequency; and returning to the normal operation mode when the wake-up event is detected.
Abstract:
A rotation velocity sensor includes a driving unit, a proof mass, a rotation sensing element, a compensating unit, and a rotation sensing unit. The driving unit generates a vibration driving signal and a reference signal. The proof mass is driven by the vibration driving signal to vibrate in a first direction. The rotation sensing element senses a vibration of the proof mass to generate a charge signal which corresponds to a portion of the vibration of the proof mass in a second direction orthogonal to the first direction. The compensating unit generates a compensation signal according to the reference signal. The rotation sensing unit converts the charge signal to a voltage signal or a current signal, and compensates the voltage signal or the current signal according to the compensation signal to cancel a noise in the second direction.