摘要:
Embodiments of the invention provide methods, systems, and apparatus for determining a property of wind approaching a wind turbine. A light detection and ranging equipment may emit pulsed radiation into oncoming wind to detect properties of the wind at a plurality of predefined locations. A property of the wind approaching the wind turbine may be determined based on the property of wind measured at at least two predefined locations.
摘要:
Embodiments of the invention provide methods, systems, and apparatus for determining a property of wind approaching a wind turbine. A light detection and ranging equipment may emit pulsed radiation into oncoming wind to detect properties of the wind at a plurality of predefined locations. A property of the wind approaching the wind turbine may be determined based on the property of wind measured at at least two predefined locations.
摘要:
A LIDAR or other remote sensing apparatus is mounted on a wind turbine to sense one or more wind parameters. An extreme event detector processing signals from the LIDAR to determine whether a given sensed parameter will, when it arrives at the turbine, exceed a predetermined value and represent an extreme event. On detection of an extreme event, the detector outputs an extreme event signal to a controller. The controller controls overrating of the turbine in response to a variety of sensed parameters and selectively operates the turbine at above rated wind speed. On receipt of the extreme event signal the overrating is overridden to prevent damage to turbine components. The controller may be a power plant controller and the override signal may override only overrating at the turbine which has detected the extreme event, or a plurality of turbines.
摘要:
A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Wind speed signals from the wind turbine are processed to detect an extreme operating gust. The detection is performed by differentiating the axial wind velocity and filtering for a period of time. On detection of extreme operating gust the system controller takes necessary evasive action which may include shutting down the turbine or varying the blade pitch angle.
摘要:
A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Wind speed signals from the wind turbine are processed to detect an extreme operating gust. The detection is performed by differentiating the axial wind velocity and filtering for a period of time. On detection of extreme operating gust the system controller takes necessary evasive action which may include shutting down the turbine or varying the blade pitch angle.
摘要:
A LIDAR or other remote sensing apparatus is mounted on a wind turbine to sense one or more wind parameters. An extreme event detector processing signals from the LIDAR to determine whether a given sensed parameter will, when it arrives at the turbine, exceed a predetermined value and represent an extreme event. On detection of an extreme event, the detector outputs an extreme event signal to a controller. The controller controls overrating of the turbine in response to a variety of sensed parameters and selectively operates the turbine at above rated wind speed. On receipt of the extreme event signal the overrating is overridden to prevent damage to turbine components. The controller may be a power plant controller and the override signal may override only over-rating at the turbine which has detected the extreme event, or a plurality of turbines.
摘要:
A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Signals from the wind turbine are processed to detect an extreme event. On detection the system controller takes the necessary evasive action depending on the nature and severity of the extreme condition detected. This may include a significant reduction in power generated, complete shutdown of the generator and yawing of the nacelle and rotor to reduce loading on the rotor blades.
摘要:
A wind turbine (30) comprising: a rotor (36) having a plurality of blades (38); and a controller (100). The controller (100) is arranged to independently control each of the plurality of blades (38) and/or one or more components of each blade (38) in order to increase a driving moment of each blade (38) independently of other of the blades (38) when speed of wind acting on the wind turbine (30) is below rated. The controller (100) is also additionally or alternatively arranged to independently control each of the plurality of blades (38) and/or one or more components of each blade (38) independently of other of the blades (38) when wind force acting on the blades (38) is above cut-out in order to reduce a mechanical load experienced by at least a part of the wind turbine (30).
摘要:
A wind turbine comprising: a rotor having a plurality of blades; and a controller. The controller is arranged to independently control each of the plurality of blades and/or one or more components of each blade in order to increase a driving moment of each blade independently of other of the blades when speed of wind acting on the wind turbine is below rated. The controller is also additionally or alternatively arranged to independently control each of the plurality of blades and/or one or more components of each blade independently of other of the blades when wind force acting on the blades is above cut-out in order to reduce a mechanical load experienced by at least a part of the wind turbine.
摘要:
A wind turbine (1) in which the yaw speed of a rotor (4) of the wind turbine (1) is increased, in a direction to reduce yaw error, from a first speed to a faster second speed when at least one of a yaw error threshold and a rate of change in yaw error threshold is exceeded. Yaw error is an amount an axis about which the rotor (4) is rotatable is offset from the wind direction to which the rotor (4) is exposed. As a result, the maximum loads that a wind turbine 1 should withstand may be reduced and lighter wind turbine components result.