Abstract:
The invention relates to particulate lithium metal formations having a substantially spherical geometry and a core composed of metallic lithium, which are enclosed with an outer passivating but ionically conductive layer containing nitrogen. The invention further relates to a method for producing lithium metal formations by reacting lithium metal with one or more passivating agent(s) containing nitrogen, selected from the groups N2, NxHy with x=1 or 2 and y=3 or 4, or a compound containing only the elements C, H, and N, and optionally Li, at temperatures in the range between 60 and 300° C., preferably between 100 and 280° C., and particularly preferably above the melting temperature of lithium of 180.5° C., in an inert organic solvent under dispersion conditions or in an atmosphere that contains a gaseous coating agent containing nitrogen.
Abstract:
Described is a coated, (partly) lithiated graphite powder characterized in that it has been produced in a non-electrochemical process from metallic lithium and graphite in powder form and has been stabilized outside an electrochemical cell by application of a coating layer; and a galvanic cell comprising a cathode, a lithium-conductive electrolyte-separator system and an anode comprising a coated, (partly) lithiated graphite powder, where the (partial) lithiation and the coating of the graphite powder are performed non-electrochemically outside the galvanic cell (ex situ).
Abstract:
One or more concentrated low-viscosity solutions of alkaline earth alkoxide compounds M(OCH2R6)2-a-b(OR7)a[O(CHR8)OR9]b in mixture with a metal alkyl compound M(R10R11) in an aprotic solvent and related methods are disclosed herein.