摘要:
A method of producing metallic sodium powders. The method includes immersing one or more solid pieces of sodium metal in an organic liquid containing a hydrocarbon oil. The solid piece(s) of sodium metal immersed in the hydrocarbon oil is (are) then subjected to ultrasonic irradiation, wherein the solid piece of sodium metal is fragmented to form sodium powder, resulting in a dispersion of the sodium powder in the organic liquid. The dispersed sodium powder is then separated from the organic liquid, resulting in metallic sodium powder. A method of presodiation of an anode in an electrochemical cell. The method includes adding sodium metal powders to the surface of the anode either as a dry powder or as a suspension of the sodium particles in an organic liquid. An anode in an electrochemical cell containing metallic sodium particles. An electrochemical cell comprising a presodiated anode.
摘要:
The present invention provides a lithium metal powder protected by a substantially continuous layer of a polymer. Such a substantially continuous polymer layer provides improved protection such as compared to typical CO2-passivation.
摘要:
Some variations provide a process for additive manufacturing of a nanofunctionalized metal alloy, comprising: providing a nanofunctionalized metal precursor containing metals and grain-refining nanoparticles; exposing a first amount of the nanofunctionalized metal precursor to an energy source for melting the precursor, thereby generating a first melt layer; solidifying the first melt layer, thereby generating a first solid layer; and repeating many times to generate a plurality of solid layers in an additive-manufacturing build direction. The additively manufactured, nanofunctionalized metal alloy has a microstructure with equiaxed grains. Other variations provide an additively manufactured, nanofunctionalized metal alloy comprising metals selected from aluminum, iron, nickel, copper, titanium, magnesium, zinc, silicon, lithium, silver, chromium, manganese, vanadium, bismuth, gallium, or lead; and grain-refining nanoparticles selected from zirconium, tantalum, niobium, titanium, or oxides, nitrides, hydrides, carbides, or borides thereof, wherein the additively manufactured, nanofunctionalized metal alloy has a microstructure with equiaxed grains.
摘要:
A printable lithium composition is provided. The printable lithium composition includes lithium metal powder; a polymer binder, wherein the polymer binder is compatible with the lithium powder; and a rheology modifier, wherein the rheology modifier is compatible with the lithium powder and the polymer binder. The printable lithium composition may further include a solvent compatible with the lithium powder and with the polymer binder.
摘要:
The present application provides a system and method for discharging and processing of lithium ion batteries to extract one or more metals. The extracted metals are in a powder form that can be reused at second stage processing facilities. The extracted metal powder can include lithium and at least one of cobalt, nickel, manganese, and carbon.
摘要:
The present invention provides a lithium metal powder protected by a substantially continuous layer of a polymer. Such a substantially continuous polymer layer provides improved protection such as compared to typical CO2-passivation.
摘要:
A method for depositing lithium on a substrate to form an electrode is provided. The method includes applying a printable lithium composition comprised of lithium metal powder, a polymer binder compatible with the lithium metal powder, a rheology modifier compatible with the lithium metal powder and a solvent compatible with the lithium metal powder and with the polymer binder, to a substrate.
摘要:
The solvated metal particle-coating system includes a metal additive and a polar outer-sphere electron transferring solvent. The metal additive is solvated in the polar outer-sphere electron transferring solvent. The polar outer-sphere electron transferring solvent may include liquid ammonia, methylamine, and/or hexamethylphosphoramide. The metal additive may include an alkali metal and/or an alkaline earth metal. The solvated metal additive within the polar outer-sphere electron transferring solvent may be used to coat a metal particle and/or a metalloid particle as a layer. As the polar outer-sphere electron transferring solvent evaporates, the solvated metal additive is coupled to the metal particle and/or the metalloid particle.
摘要:
Disclosed are a lithium metal composite electrode material for a lithium metal battery, a preparation method for the same, and an electrode, battery, battery module, battery pack and apparatus comprising the same. The lithium metal composite electrode material comprises: lithium metal particles and a lithium-containing conductive layer serving as a supporting framework, the supporting framework being filled with the lithium metal particles; wherein the lithium-containing conductive layer comprises an inorganic lithium compound and a lithium alloy. The lithium metal composite electrode material can solve the problems that, when lithium metal is used as a negative electrode, the electrolyte is easily consumed, and lithium dendrites are easily produced, deposited and dissolved to change electrode thickness, which in turn affects the cycle stability, electrical performance and structural stability of the battery, so as to achieve the purpose of improving the structural stability and cycle stability of the lithium metal electrode.
摘要:
A method of producing metallic sodium powders. The method includes immersing one or more solid pieces of sodium metal in an organic liquid containing a hydrocarbon oil. The solid piece (s) of sodium metal immersed in the hydrocarbon oil is (are) then subjected to ultrasonic irradiation, wherein the solid piece of sodium metal is fragmented to form sodium powder, resulting in a dispersion of the sodium powder in the organic liquid. The dispersed sodium powder is then separated from the organic liquid, resulting in metallic sodium powder. A method of presodiation of an anode in an electrochemical cell. The method includes adding sodium metal powders to the surface of the anode either as a dry powder or as a suspension of the sodium particles in an organic liquid. An anode in an electrochemical cell containing metallic sodium particles. An electrochemical cell comprising a presodiated anode.