Abstract:
A filter and its holder each have a keyed surface, one being a protruding “key” and one being a recessed “lock,” wherein cooperation of these keyed surfaces is required in order for the filter to be installed in the holder. Modification/adaptation of the keyed surfaces, by changing the location, number and length of the key protrusions and cooperating recesses during manufacture, allows various sets of mating filters and holders to be produced so that only mating/matching filters and holders may be connected together. The keyed protrusions are preferably located on an upper shoulder or on protruding flange(s) of the upper end of the filter. The cooperating recess structure inside the filter holder comprises axial recesses that allow axial insertion of the key protrusions, and hence the filter, into the holder and also a circumferential recesses portion that receives multiple key protrusions to retain the filter in the holder. This way, multiple key protrusions slide into and are retained in a single circumferential recess/slot, rather than each key protrusion being received in its own separate circumferential recess/slot.
Abstract:
Embodiments of a key system for filters and their connecting heads, brackets, or other holders are shown. The filter cartridge and its holder each have a keyed surface, one being a protruding “key” and one being a recessed “lock”. Cooperation of these keyed surfaces is required in order for the filter cartridge to be installed in the holder, so that mis-matched cartridges cannot be installed into the holder, for example, to prevent a particular type of cartridge from being placed in a filtration or other process where it would be inappropriate, or undesired. The keyed surfaces are selectively locate-able preferably at different circumferential locations on a perimeter of the filter and a corresponding location on a perimeter of the head/holder. The perimeter may be, for example, on an outer shoulder surface of a filter and an inner surface of a valve head, or on outer and inner surfaces of connectors that provide a liquid seal between the filter and the head/holder.
Abstract:
A filter and its holder each have a keyed surface, one being a protruding “key” and one being a recessed “lock,” wherein cooperation of these keyed surfaces is required in order for the filter to be installed in the holder. Modification/adaptation of the keyed surfaces, by changing the location, number and length of the key protrusions and cooperating recesses during manufacture, allows various sets of mating filters and holders to be produced so that only mating/matching filters and holders may be connected together. The keyed protrusions are preferably located on an upper shoulder or on protruding flange(s) of the upper end of the filter. The cooperating recess structure inside the filter holder comprises axial recesses that allow axial insertion of the key protrusions, and hence the filter, into the holder and also a circumferential recesses portion that receives multiple key protrusions to retain the filter in the holder. This way, multiple key protrusions slide into and are retained in a single circumferential recess/slot, rather than each key protrusion being received in its own separate circumferential recess/slot.
Abstract:
Filter modules for use in a water dispenser, carafe, or other gravity-flow water filtration and dispensing unit are self-supporting, rigid and porous, and are adapted in size and shape to substantially fill a generally-cylindrical housing. The filter modules are molded forms of high-porosity compositions, so that they are consistent in performance and “non-dusting” compared to the unpredictable arrangements, positions, and performance of loose activated carbon particles. Filter modules may include activated carbon, zeolitic, resins, metal-scavengers, and/or other water filtration/treatment media granules/powders, for example, bound into a solid profile form by thermoplastic and/or other polymeric binders. Low melt index, or very low melt index, binders are preferred to maximize exposure of the activated carbon surface area. Thin walls of media surround the preferred single core/bore of each module, to preferably form generally D-shaped or triangular modules, wherein multiple modules of the same shape may be attached side-by-side to a housing plate/member, to substantially fill the housing, with the modules close together but spaced to allow water flow between and all around the modules.
Abstract:
Embodiments of a key system for filters and their connecting heads, brackets, or other holders are shown. The filter cartridge and its holder each have a keyed surface, one being a protruding “key” and one being a recessed “lock”. Cooperation of these keyed surfaces is required in order for the filter cartridge to be installed in the holder, so that mis-matched cartridges cannot be installed into the holder, for example, to prevent a particular type of cartridge from being placed in a filtration or other process where it would be inappropriate, or undesired. The keyed surfaces are selectively locate-able preferably at different circumferential locations on a perimeter of the filter and a corresponding location on a perimeter of the head/holder. The perimeter may be, for example, on an outer shoulder surface of a filter and an inner surface of a valve head, or on outer and inner surfaces of connectors that provide a liquid seal between the filter and the head/holder.
Abstract:
Multi-core solid profile filter media blocks include multiple sub-blocks, which may be formed by providing a block with multiple interior cavities extending deep into the block, to allow water to flow deep inside the filter block to access the media of the sub-block (in the case wherein the cavities are at the inlet to the block) or that allows water to be collected from each filtration sub-block (in the case wherein the cavities are at the outlet from the block). One or more indentations/spaces/gaps in the exterior surface of the block also may be provided to separate and extend between portions of the sub-blocks, so that substantially all of the filter media of a sub-block is accessible to fluid for filtration. This way, a filter block may include a large amount of media in a small cartridge or package volume, and the filter block may exhibit good flow distribution and low pressure drop. Sub-blocks of the filter block may be integrally formed together into the filter block, or may be directly connected, for example, preferably without any housing or internals clamping or fastening the sub-blocks together.