Abstract:
The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By comprising the organic electroluminescent compound according to the present disclosure, it is possible to provide an organic electroluminescent device having improved driving voltage, luminous efficiency, lifetime and/or power efficiency properties.
Abstract:
The present disclosure relates to an organic metal compound having the following structure of Formula 1, an organic light emitting diode (OLED) and an organic light emitting device that includes the organic metal compound. The OLED and the organic light emitting device including the organic metal compound can improve their luminous efficiency, luminous color purity and lifespan. Ir(LA)m(LB)n [Formula 1]
Abstract:
The present invention relates to an organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant; the host comprises plural host compounds; at least a first host compound of the plural host compounds has a structure of a nitrogen-containing heterocyclic linker bonded to a nitrogen atom of a carbazole of an indole-carbazole, indene-carbazole, benzofuran-carbazole, or benzothiophene-carbazole residue; and a second host compound has a carbazole-aryl-carbazole or carbazole-carbazole structure. According to the present invention, by using a specific multi-component host different from the conventional organic electroluminescent device, an organic electroluminescent device of significantly improved lifespan is provided.
Abstract:
The present invention relates to a novel organic electroluminescent compound, layer and an organic electroluminescent device using the same. Said organic luminescent compound provides an organic light emitting layer and/or device which has high luminous efficiency and a long operation lifetime and requires a low driving voltage improving power efficiency and power consumption.
Abstract:
The present invention relates to a specific combination of a dopant compound and a host compound, and an organic electroluminescent device comprising the same. The organic electroluminescent device according to the present invention, has an advantage of showing a higher luminous efficiency under a driving voltage lower than that of the device comprising conventional luminescent materials.
Abstract:
The present disclosure relates to an organic electroluminescent compound represented by formula 1, a plurality of host materials comprising a combination of specific compounds, and an organic electroluminescent device comprising the same. The organic electroluminescent device having improved driving voltage, luminous efficiency and/or lifespan properties can be provided by including the organic electroluminescent compound or a specific combination of compounds according to the present disclosure as a host material(s).
Abstract:
The present disclosure relates to an organic electroluminescent device including a first electrode; a second electrode; and at least one light-emitting layer(s) positioned between the first electrode and the second electrode, and wherein the light-emitting layer includes a host comprising a compound represented by formula 1 and a compound represented by formula 2, and a dopant comprising a compound represented by formula 3, so that the present disclosure may provide an organic electroluminescent device having high efficiency and long lifespan property.
Abstract:
The present invention relates to a plurality of host materials and an organic electroluminescent device comprising the same. By comprising a specific combination of a plurality of host compounds, the organic electroluminescent device according to the present invention provides high efficiency and long lifespan.
Abstract:
The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By using the organic electroluminescent compound according to the present disclosure, it is possible to produce an organic electroluminescent device which has a low driving voltage, excellent current and power efficiencies, and improved operation lifespan.
Abstract:
The present disclosure relates to an organic electroluminescent device. The organic electroluminescent device of the present disclosure shows high luminous efficiency and good lifespan by comprising a specific combination of the plural kinds of host compounds and a specific hole transport compound.