Abstract:
A bearing assembly includes an outer race having an inner surface defining a concave contour and an inner race positioned in the outer race. The inner race has an inner surface defining a bore therethrough and an outer surface defining at least one groove circumscribing the outer surface. A plurality of rolling elements is rollably located in the groove and is in rolling contact with the inner surface of the outer race. A lubricious liner has an inner liner-surface and an exterior liner-surface, the exterior liner-surface being disposed on the inner surface defining the bore. The lubricious liner has a modulus of compression of a magnitude sufficient to allow misalignment of the inner liner-surface relative to the exterior liner-surface in response to a force applied thereto.
Abstract:
A rod end includes a shaft and a head extending from the shaft. The head has an opening extending therethrough. The rod end includes a spherical bearing rotatably disposed in the opening. The spherical bearing is manufactured from an austenitic stainless steel alloy that includes 16 to 17 weight percent chromium and 0.1 to 0.18 weight percent nitrogen.
Abstract:
A rotation rod assembly includes a first linkage rod having a first bore extending therein. The rotation rod assembly includes a second linkage rod having a piston section extending axially therefrom, the piston section is disposed for rotation in the first bore. The piston section is axially restrained in the bore. The piston section has a self-lubricating liner secured to at least one outer surface thereof. The self-lubricating liner is in sliding engagement with portions of the bore. The liner is secured to the radially and/or axially outer surfaces of the piston section and has at least one groove therein for collection of wear materials and debris.
Abstract:
A rotation rod assembly includes a first linkage rod having a first bore extending therein. The rotation rod assembly includes a second linkage rod having a piston section extending axially therefrom, the piston section is disposed for rotation in the first bore. The piston section is axially restrained in the bore. The piston section has a self-lubricating liner secured to at least one outer surface thereof. The self-lubricating liner is in sliding engagement with portions of the bore. The liner is secured to the radially and/or axially outer surfaces of the piston section and has at least one groove therein for collection of wear materials and debris.
Abstract:
A link apparatus includes a tubular member that retains 90% of ultimate tensile strength at a temperature of up to 329.44° Celsius (625° Fahrenheit). Two conical adapters are joined to ends of the tubular member. One threaded shank of a rod end is threaded into a right hand threaded base of one conical adapter, and a threaded shank of another rod end is threaded into a left hand threaded base of the other conical adapter. Each rod end has a bearing assembly disposed therein including an outer race, a ball disposed therein, and a low-friction liner disposed between the outer race and ball for mitigating moment loading on the tubular member. The cross-sectional area of the tubular member is at least as great as the cross sectional area of the rod ends. The tubular member is tensionable by rotation relative to the rod ends.
Abstract:
A bearing assembly includes an outer race having an inner surface defining a concave contour and an inner race positioned in the outer race. The inner race has an inner surface defining a bore therethrough and an outer surface defining at least one groove circumscribing the outer surface. A plurality of rolling elements is rollably located in the groove and is in rolling contact with the inner surface of the outer race. A lubricious liner has an inner liner-surface and an exterior liner-surface, the exterior liner-surface being disposed on the inner surface defining the bore. The lubricious liner has a modulus of compression of a magnitude sufficient to allow misalignment of the inner liner-surface relative to the exterior liner-surface in response to a force applied thereto.
Abstract:
A load slot bearing system for a mounting system for a gearbox on a geared turbofan engine includes a load slot bearing assembly having a cobalt alloy inner member and a precipitation-hardenable alloy outer member. The inner member defines an outer engagement surface and the outer member defines an inner engagement surface slidably and rotatably engaged with the inner engagement surface. One of the outer engagement surface or the inner engagement surface has boron diffused therein. The load slot bearing system includes first and second slots extending inward from a face defined by the outer member, the second slot being positioned generally diametrically opposite the first slot. A first element is located in the bore of the inner member of the load slot bearing assembly and is connected to the inner member. A second element is connected to the outer member of the load slot bearing assembly.
Abstract:
A link apparatus includes a tubular member that retains 90% of ultimate tensile strength at a temperature of up to 625°. Two conical adapters are mechanically joined to respective ends of the tubular member. Two rod ends include a threaded shank and a socket. One threaded shank is threaded into a right hand threaded base of one conical adapter, and the other threaded shank is threaded into a left hand threaded base of the other conical adapter. Each of the sockets have a bearing assembly disposed therein including an outer race, a ball disposed therein, and a low-friction liner disposed between the outer race and ball for mitigating moment loading on the tubular member. The cross-sectional area of the tubular member is about equal to the cross sectional area of the rod ends. The tubular member is tensionable by rotation relative to the rod ends.
Abstract:
A high-cycle, short range-of-motion linkage apparatus is provided for actuating a positioning device. The linkage apparatus includes a pivot member having a head portion configured to receive by plastic deformation a bearing assembly therein. The head portion defines a bore therein having a substantially cylindrical inner surface that defines an inner diameter having a first center point. The head portion further defines a truncated arcuate outer surface, a portion of which defines a radius of curvature and a second center point. A stem having a central axis extends from the pivot member along the central axis in a first direction. The second center point is offset from the first center point in the first direction and a distance between the first center point and the second center point, measured along the central axis, is in the range of up to about 33% of the radius of curvature.
Abstract:
A loader slot bearing includes an annular housing having first and second axial surfaces and an interior area extending therebetween. The interior area has a first inner surface that extends between the first and second axial surfaces. A portion of the inner surface is a first bearing surface that has a spherical contour. A slot extends partially into the first inner surface from the first axial surface. The slot has a first width. The annular housing is manufactured from a precipitation hardened corrosion resistant stainless steel. The loader slot bearing includes a truncated ball that is positioned in the slot and rotated so that the truncated ball is rotatably retained by the first bearing surface. The truncated ball is angularly misalignable relative to the housing and is manufactured from a 440C stainless steel. A dry lubricant is applied to the spherical exterior surface of the truncated ball.