摘要:
A method is provided for mitigating hydrogen evolution within a flow battery system that includes a plurality of flow battery cells, a power converter and an electrochemical cell. The method includes providing hydrogen generated by the hydrogen evolution within the flow battery system to the electrochemical cell. A first electrical current generated by an electrochemical reaction between the hydrogen and a reactant is sensed, and the sensed current is used to control an exchange of electrical power between the flow battery cells and the power converter.
摘要:
A flow battery includes an electrode operable to be wet by a solution having a reversible redox couple reactant. In one embodiment, the electrode can have plurality of micro and macro pores, wherein the macro pores have a size at least one order of magnitude greater than a size of the micro pores. In another embodiment, the electrode includes a plurality of layers, wherein one of the plurality of layers has a plurality of macro pores, and wherein another one of the plurality of layers has a plurality of micro pores. In another embodiment, the electrode has a thickness less than approximately 2 mm. In still another embodiment, the electrode has a porous carbon layer, wherein the layer is formed of a plurality of particles bound together.
摘要:
A flow battery includes a membrane having a thickness of less than approximately one hundred twenty five micrometers; and a solution having a reversible redox couple reactant, wherein the solution wets the membrane.
摘要:
A method is provided for mitigating hydrogen evolution within a flow battery system that includes a plurality of flow battery cells, a power converter and an electrochemical cell. The method includes providing hydrogen generated by the hydrogen evolution within the flow battery system to the electrochemical cell. A first electrical current generated by an electrochemical reaction between the hydrogen and a reactant is sensed, and the sensed current is used to control an exchange of electrical power between the flow battery cells and the power converter.
摘要:
A flow battery includes an electrode operable to be wet by a solution having a reversible redox couple reactant. In one embodiment, the electrode can have plurality of micro and macro pores, wherein the macro pores have a size at least one order of magnitude greater than a size of the micro pores. In another embodiment, the electrode includes a plurality of layers, wherein one of the plurality of layers has a plurality of macro pores, and wherein another one of the plurality of layers has a plurality of micro pores. In another embodiment, the electrode has a thickness less than approximately 2 mm. In still another embodiment, the electrode has a porous carbon layer, wherein the layer is formed of a plurality of particles bound together.
摘要:
A flow battery includes at least one electrochemical cell that has a first electrode, a second electrode spaced apart from the first electrode and a separator arranged between the first electrode and the second electrode. A first storage portion and a second storage portion are respectively fluidly connected with the at least one electrochemical cell. A first liquid electrolyte and a second liquid electrolyte are located in the respective first storage portion and second storage portion. The first electrode has an area over which it is catalytically active with regard to the first liquid electrolyte and the second electrode has an area over which it is catalytically active with regard to the second liquid electrolyte such that the area of the first electrode is greater than the area of the second electrode.
摘要:
A flow battery system includes a flow battery stack, a sensor and a coolant loop. The flow battery stack has an electrolyte solution flowing therethrough, and the sensor is in communication with the electrolyte solution. The coolant loop is in heat exchange communication with the electrolyte solution, wherein the heat exchange communication is selective based on an output from the sensor.
摘要:
A flow battery system includes a flow battery stack, a sensor and a coolant loop. The flow battery stack has an electrolyte solution flowing therethrough, and the sensor is in communication with the electrolyte solution. The coolant loop is in heat exchange communication with the electrolyte solution, wherein the heat exchange communication is selective based on an output from the sensor.
摘要:
A flow battery stack includes an inlet manifold, an outlet manifold and a plurality of flow battery cells. The inlet and outlet manifolds each have first and second passages. The first and second passages in at least one of the inlet and outlet manifolds are tortuous. Each flow battery cell includes a separator arranged between a first electrode layer and a second electrode layer. The flow battery cells are axially connected between the inlet manifold and the outlet manifold such that a first solution having a first reversible redox couple reactant is directed from the inlet first passage through the flow battery cells, wetting the first electrode layers, to the outlet first passage.
摘要:
A flow battery system includes an ON mode, and OFF mode and a STANDBY mode. The ON mode enables access to a full energy capacity of the flow battery system with regard to an amount of electric power that can be drawn from or stored to the flow battery system. The OFF mode disables access to the full energy capacity and the STANDBY mode enables access to a portion of the full energy capacity.