摘要:
Principles of the invention relate to techniques for transmission of Layer 2 (L2) traffic over a point to multi-point (P2MP) label switched path (LSP) within a multi-protocol Label Switching (MPLS) network. A source or ingress network device may implement the techniques to connect multiple L2 interfaces to a P2MP LSP within an MPLS network via a P2MP Pseudo-Wire (PW) mechanism that emulates delivery of L2 data units over a packet switched network, such as the MPLS network. The ingress network device first establishes the P2MP LSP and then connects two or more L2 interfaces to the P2MP LSP via the P2MP PW mechanism. Egress network devices may also implement the techniques to terminate the P2MP LSP and de-multiplex traffic arriving via multiple P2MP PWs carried over the same P2MP LSP.
摘要:
Principles of the invention relate to techniques for transmission of Layer 2 (L2) traffic over a point to multi-point (P2MP) label switched path (LSP) within a multi-protocol Label Switching (MPLS) network. A source or ingress network device may implement the techniques to connect multiple L2 interfaces to a P2MP LSP within an MPLS network via a P2MP Pseudo-Wire (PW) mechanism that emulates delivery of L2 data units over a packet switched network, such as the MPLS network. The ingress network device first establishes the P2MP LSP and then connects two or more L2 interfaces to the P2MP LSP via the P2MP PW mechanism. Egress network devices may also implement the techniques to terminate the P2MP LSP and de-multiplex traffic arriving via multiple P2MP PWs carried over the same P2MP LSP.
摘要:
A network device receives a join request on a downstream interface, wherein the join request specifies a source device and multicast group, wherein the network device is positioned within a core network of a multicast virtual private network (MVPN) that transmits multicast traffic between the source device and a plurality of receivers associated with customer sites. The network device selects an upstream router to which to send the join request from among a plurality of upstream routers on paths leading to the source device, so as to avoid creating a join request loop in the core network. At least one of the upstream routers is positioned on an Exterior Border Gateway Protocol (EBGP) path toward the source device, and at least one of the upstream routers is positioned on an Interior BGP (IBGP) path toward the source device. The network device sends the join request to the selected upstream device.
摘要:
Principles of the invention are described for providing multicast virtual private networks (MVPNs) across a public network that are capable of carrying high-bandwidth multicast traffic with increased scalability. In particular, the MVPNs may transport layer three (L3) multicast traffic, such as Internet Protocol (IP) packets, between remote sites via the public network. The principles described herein may reduce the overhead of protocol independent multicast (PIM) neighbor adjacencies and customer control information maintained for MVPNs. The principles may also reduce the state and the overhead of maintaining the state in the network by removing the need to maintain at least one dedicated multicast tree per each MVPN.
摘要:
Principles of the invention are described for providing multicast virtual private networks (MVPNs) across a public network that are capable of carrying high-bandwidth multicast traffic with increased scalability. In particular, the MVPNs may transport layer three (L3) multicast traffic, such as Internet Protocol (IP) packets, between remote sites via the public network. The principles described herein may reduce the overhead of protocol independent multicast (PIM) neighbor adjacencies and customer control information maintained for MVPNs. The principles may also reduce the state and the overhead of maintaining the state in the network by removing the need to maintain at least one dedicated multicast tree per each MVPN.
摘要:
Principles of the invention are described for providing multicast virtual private networks (MVPNs) across a public network that are capable of carrying high-bandwidth multicast traffic with increased scalability. In particular, the MVPNs may transport layer three (L3) multicast traffic, such as Internet Protocol (IP) packets, between remote sites via the public network. The principles described herein may reduce the overhead of protocol independent multicast (PIM) neighbor adjacencies and customer control information maintained for MVPNs. The principles may also reduce the state and the overhead of maintaining the state in the network by removing the need to maintain at least one dedicated multicast tree per each MVPN.
摘要:
Principles of the invention are described for providing multicast virtual private networks (MVPNs) across a public network that are capable of carrying high-bandwidth multicast traffic with increased scalability. In particular, the MVPNs may transport layer three (L3) multicast traffic, such as Internet Protocol (IP) packets, between remote sites via the public network. The principles described herein may reduce the overhead of protocol independent multicast (PIM) neighbor adjacencies and customer control information maintained for MVPNs. The principles may also reduce the state and the overhead of maintaining the state in the network by removing the need to maintain at least one dedicated multicast tree per each MVPN.
摘要:
Principles of the invention are described for providing multicast virtual private networks (MVPNs) across a public network that are capable of carrying high-bandwidth multicast traffic with increased scalability. In particular, the MVPNs may transport layer three (L3) multicast traffic, such as Internet Protocol (IP) packets, between remote sites via the public network. The principles described herein may reduce the overhead of protocol independent multicast (PIM) neighbor adjacencies and customer control information maintained for MVPNs. The principles may also reduce the state and the overhead of maintaining the state in the network by removing the need to maintain at least one dedicated multicast tree per each MVPN.
摘要:
Principles of the invention are described for providing multicast virtual private networks (MVPNs) across a public network that are capable of carrying high-bandwidth multicast traffic with increased scalability. In particular, the MVPNs may transport layer three (L3) multicast traffic, such as Internet Protocol (IP) packets, between remote sites via the public network. The principles described herein may reduce the overhead of protocol independent multicast (PIM) neighbor adjacencies and customer control information maintained for MVPNs. The principles may also reduce the state and the overhead of maintaining the state in the network by removing the need to maintain at least one dedicated multicast tree per each MVPN.
摘要:
The invention is directed toward techniques for Multi-Protocol Label Switching (MPLS) upstream label assignment for the Resource Reservation Protocol with Traffic Engineering (RSVP-TE). The techniques include extensions to the RSVP-TE that enable distribution of upstream assigned labels in Path messages from an upstream router to two or more downstream routers of tunnel established over a network. The tunnel may comprise a RSVP-TE P2MP Label Switched Path (LSP) or an Internet Protocol (IP) multicast tunnel. The techniques also include extensions to the RSVP-TE that enable a router to advertise upstream label assignment capability to neighboring routers in the network. The MPLS upstream label assignment using RSVP-TE described herein enables a branch router to avoid traffic replication on a Local Area Network (LAN) for RSVP-TE P2MP LSPs.