摘要:
A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.
摘要:
A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.
摘要:
A medical device with a high voltage connection line for carrying a high DC supply voltage has a control unit generating said high DC supply voltage which is fed through a first AC block unit to said high voltage connection line and generating a digital control signal fed through a first AC coupling unit to said high voltage connection line, and a remotely located unit a second AC block unit coupled to said high voltage connection line for receiving said high DC supply voltage and a second AC coupling unit coupled to said high voltage connection line for receiving said digital control signal.
摘要:
A medical device with a high voltage connection line for carrying a high DC supply voltage has a control unit generating said high DC supply voltage which is fed through a first AC block unit to said high voltage connection line and generating a digital control signal fed through a first AC coupling unit to said high voltage connection line, and a remotely located unit a second AC block unit coupled to said high voltage connection line for receiving said high DC supply voltage and a second AC coupling unit coupled to said high voltage connection line for receiving said digital control signal.
摘要:
A phantom for use in generating a normalization data set to be used in PET scanning (particularly integrated MR/PET scanning) is disclosed. The phantom features radiation activity distributed throughout a foam material. The foam—e.g., a polyurethane foam—may be produced by reacting two liquids, one of which is emulsified with water in which Ge68 has been dissolved. The foam produced thereby exhibits uniform distribution of radioactivity and a long mean free path for 511 keV gamma particles—two attributes that are important attributes of a PET phantom.
摘要:
A combined PET/MRI device is disclosed. In at least one embodiment, the PET/MRI device includes an MRI unit for exciting nuclear spins in an examination volume and for receiving signals generated by the excitation in the examination volume, and a PET unit with a detector which surrounds the examination volume at least in part and is used for detecting radiation emanating from the examination volume, with, firstly, damping of the radiation emitted by the examination volume and, secondly, undesired interactions with electromagnetic fields of the MRI unit on the components of the PET/MRI device arranged between the examination volume and the detector being avoided due to the material properties and/or structural design of the components. Corresponding components such as, for example, patient couches, bearing or support apparatuses and local coils, are both MRI and PET compatible.
摘要:
A combined PET/MRI device is disclosed. In at least one embodiment, the PET/MRI device includes an MRI unit for exciting nuclear spins in an examination volume and for receiving signals generated by the excitation in the examination volume, and a PET unit with a detector which surrounds the examination volume at least in part and is used for detecting radiation emanating from the examination volume, with, firstly, damping of the radiation emitted by the examination volume and, secondly, undesired interactions with electromagnetic fields of the MRI unit on the components of the PET/MRI device arranged between the examination volume and the detector being avoided due to the material properties and/or structural design of the components. Corresponding components such as, for example, patient couches, bearing or support apparatuses and local coils, are both MRI and PET compatible.
摘要:
A phantom for use in generating a normalization data set to be used in PET scanning (particularly integrated MR/PET scanning) is disclosed. The phantom features radiation activity distributed throughout a foam material. The foam—e.g., a polyurethane foam—may be produced by reacting two liquids, one of which is emulsified with water in which Ge68 has been dissolved. The foam produced thereby exhibits uniform distribution of radioactivity and a long mean free path for 511 keV gamma particles—two attributes that are important attributes of a PET phantom.
摘要:
A phantom for use in quality control measurement of a fully integrated magnetic resonance/PET scanner is disclosed. The phantom features radiation activity distributed throughout an electrically conductive binder. Suitably, the binder is elastomeric and includes carbon fibers distributed throughout it to set the conductivity of the phantom to a desired level. The phantom is applicable to various multimodality integrated medical imaging systems such as MR/SPECT and MR/CT in addition to MR/PET.
摘要:
A magnetic resonance antenna arrangement includes at least one first antenna group including individually-controllable first antenna conductor loops and a second antenna group adjacent to the first antenna group. The second antenna group includes individually-controllable, longitudinal second antenna elements. The first antenna conductor loops essentially extend in a first extending surface and are disposed in the first extending surface in a first direction in a row behind one another. The longitudinal second antenna elements extend with the longitudinal axes transverse to the first direction disposed in parallel next to one another in a second extending surface that runs essentially in parallel to the first extending surface. Each of the second antenna elements are coupled at first and second end areas to a conductive element to form a second conductor loop with the conductive element. The second antenna elements are disposed to overlap an adjacent first antenna loop in each case.