摘要:
The present invention is directed to a method and apparatus for the improved characterization of an image scanner or similar image input terminal so as to enable the device to be employed in the measurement and analysis of color images. The invention uses a family of input device characterization targets, each varying in primary colorants and at a fixed level of black (K) colorant. A corresponding family of input device characterizations is derived, one for each level of K, and the final transformation is prepared such that the characterization includes K as an additional input—thereby improving the characterization and accuracy of the input device.
摘要:
The present invention is directed to a method and apparatus for the improved characterization of an image scanner or similar image input terminal so as to enable the device to be employed in the measurement and analysis of color images. The invention uses a family of input device characterization targets, each varying in primary colorants and at a fixed level of black (K) colorant. A corresponding family of input device characterizations is derived, one for each level of K, and the final transformation is prepared such that the characterization includes K as an additional input—thereby improving the characterization and accuracy of the input device.
摘要:
The system for selecting a best device for rendering a color document involves first determining the types of color data included in the color document to be printed. Once the type of color data has been determined, the color characteristics are matched against the strengths of the available output devices to obtain a list of devices best suited for this particular color print job. At least one device from the list of best devices is selected and the color document is rendered onto the selected device. Preferably, the types of color data involved are determined by the mix of defined colorimetry and undefined colorimetry in the color document. Alternatively, the types of color data are determined by analyzing the colorspaces in the document (i.e., RGB, CMYK, LAB, XYZ, etc.), and the embedded profiles, if any, in the document (e.g., sRGB, SWOPCMYK, Euroscale). In the instance wherein a number of devices match the criteria for selection, only those devices which honor embedded color profiles are selected for documents containing embedded profiles. Alternatively, only those devices are selected that produce a consistent rendering across multiple color spaces and profiles for documents with a mix of color spaces and profiles. Selecting the best device may also depend on whether the type of print job is considered to be Job-Balancing or Job-Splitting. With Job-Balancing, at least one of the metrics is used: (i) Intersection Gamut Volume, (ii) Gamut Similarity, or (iii) Mismatch Between Document Colors and Intersection Gamut for device selection. With Job-Splitting, at least one of these metrics are used: (i) Individual Gamut Volume, or (ii) Mismatch Between Document Colors and Device Gamut. Colorimetric definition of the selected colors can be retrieved from either an embedded source profile or by default and mapping the colors to the output gamut.
摘要:
A method for maintaining color consistency in an environment of networked devices is disclosed. The method involves identifying a group of devices to which a job is intended to be rendered; obtaining color characteristics from devices in the identified group; modifying the job based on the obtained color characteristics; and rendering the job on one or more of the devices. More specifically, device controllers associated with each of the output devices are queried to obtain color characteristics specific to the associated output device. Preferably, the original job and the modified job employ device independent color descriptions. Modifications are computed by a transform determined by using the color characteristics of the output devices along with the content of the job itself. The method further comprises mapping colors in the original job to the output devices' common gamut, i.e., intersection of the gamuts of the individual printers wherein the color gamut of each device is obtained from a device characterization profile either by retrieving the gamut tag or by derivation using the characterization data in the profile. The color gamut of each device is computed with knowledge of the transforms that relate device independent color to device dependent color using a combination of device calibration and characterization information. Alternatively, transformations are determined dynamically based on the characteristics of the target group of output devices. From the individual color gamuts of the devices, a common intersection gamut is derived. The common intersection gamut derivation generally comprises an intersection of two three-dimensional volumes in color space. This may be performed geometrically by intersecting the surfaces representing the boundaries of the gamut volumes—which are typically chosen as triangles. Alternately, the intersection may be computed by generating a grid of points known to include all involved device gamuts. This is then mapped sequentially to each individual gamut in turn resulting in a set of points that lie within the common gamut to produce a connected gamut surface. Once the common intersection gamut is derived, the input job colors are mapped to this gamut. The optimal technique generally depends on the characteristics of the input job and the user's rendering intent. Final color correction employs a standard calorimetric transform for each output device that does not involve any gamut mapping.
摘要:
A system and method for generating an adjusted profile for a device in response to a specified aim, where the aim may include parameters established in response to a user's specifications, for device emulation, etc.
摘要:
A method is presented for deriving gamma for a display monitor that does not involve color matching tasks. The method includes displaying a test pattern to a user on the display monitor. The test pattern includes at least one of a pattern of alternating light and dark regions displayed to the user at different gamma correction levels, or a grayscale character string displayed to the user at different digital gray levels against a background of two known luminance levels. Input is received from the user as to at least one of a gamma correction level that results in the pattern of alternating light and dark regions having light and dark regions of perceived equal size, or a digital gray level for the grayscale character string that results in maximum legibility of the text string against the two known background luminance levels. Gamma is derived for the display monitor based upon the user input.
摘要:
A method for maintaining color consistency in an environment of networked devices is disclosed. The method involves identifying a group of devices to which a job is intended to be rendered; obtaining color characteristics from devices in the identified group; modifying the job based on the obtained color characteristics; and rendering the job on one or more of the devices. Modifications are computed by a transform determined by using the color characteristics of the output devices along with the content of the job itself. The method further maps colors in the original job to the output devices' common gamut, i.e., intersection of the gamuts of the individual printers wherein the color gamut of each device is obtained from a device characterization profile either by retrieving the gamut tag or by derivation using the characterization data in the profile.
摘要:
The system for selecting a best device for rendering a color document involves first determining the types of color data included in the color document to be printed. Once the type of color data has been determined, the color characteristics are matched against the strengths of the available output devices to obtain a list of devices best suited for this particular color print job. At least one device from the list of best devices is selected and the color document is rendered onto the selected device. Preferably, the types of color data involved are determined by the mix of defined colorimetry and undefined colorimetry in the color document. Alternatively, the types of color data are determined by analyzing the colorspaces in the document (i.e., RGB, CMYK, LAB, XYZ, etc.), and the embedded profiles, if any, in the document (e.g., sRGB, SWOPCMYK, Euroscale). In the instance wherein a number of devices match the criteria for selection, only those devices which honor embedded color profiles are selected for documents containing embedded profiles. Alternatively, only those devices are selected that produce a consistent rendering across multiple color spaces and profiles for documents with a mix of color spaces and profiles. Selecting the best device may also depend on whether the type of print job is considered to be Job-Balancing or Job-Splitting. With Job-Balancing, at least one of the metrics is used: (i) Intersection Gamut Volume, (ii) Gamut Similarity, or (iii) Mismatch Between Document Colors and Intersection Gamut for device selection. With Job-Splitting, at least one of these metrics are used: (i) Individual Gamut Volume, or (ii) Mismatch Between Document Colors and Device Gamut. Colorimetric definition of the selected colors can be retrieved from either an embedded source profile or by default and mapping the colors to the output gamut.
摘要:
A color output device is generally driven by at least three independent control signals for control of its response. A desired response in device independent color space is normally obtained by employing a cascade consisting of a characterization transform and calibration transform. The calibration transform transforms input control variables into output control variables that are directly used to drive the device. Input control variables can be transformed into intermediate control variables, which can be then mapped to output control variables utilizing a two-dimensional transformation. The two-dimensional calibration architecture provides improved control functionality and flexibility.
摘要:
A system and method for generating an adjusted profile for a device in response to a specified aim, where the aim may include parameters established in response to a user's specifications, for device emulation, etc.