摘要:
Methods and apparatus for collecting, measuring, reporting and/or using information which can be used for interference control purposes. Wireless terminals measure signals transmitted from one or more base stations, e.g., base station sector transmitters. The measured signals may be, e.g., beacon signals and/or pilot signals. From the measured signals, the wireless terminal generates one or more gain ratios which provide information about the relative gain of the communications channels from different base station sectors to the wireless terminal. This information represents interference information since it provides information about the signal interference that will be caused by transmissions from other base station sectors relative to transmissions made by the base station sector to which the wireless terminal is attached. Based on the signal energy measurements and relative gains generated from the energy measures, reports are generated in accordance with the invention and sent to one or more base stations.
摘要:
Methods and apparatus for providing channel diversity to wireless terminals (WTs) in a manner that reduces the latency between the time a WT encounters satisfactory channel conditions are described. A plurality of communications channels with different physical characteristics are maintained in a cell by a base station (BS). Each WT monitors multiple channels and maintains multiple channel estimates at the same time so that rapid switching between channels is possible. Channel quality information is conveyed from each WT to the BS. The WT or BS selects a channel based on the measured channel quality. By supporting multiple channels and by introducing periodic variations into the channels in various embodiments, the time before a WT encounters a channel with good or acceptable channel conditions is minimized even if the WT does not change location. Multiple antennas are used at the BS to support numerous channels simultaneously, e.g., by controlling antenna patterns.
摘要:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
摘要:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
摘要:
Methods and apparatus for providing channel diversity to wireless terminals (WTs) in a manner that reduces the latency between the time a WT encounters satisfactory channel conditions are described. A plurality of communications channels with different physical characteristics are maintained in a cell by a base station (BS). Each WT monitors multiple channels and maintains multiple channel estimates at the same time so that rapid switching between channels is possible. Channel quality information is conveyed from each WT to the BS. The WT or BS selects a channel based on the measured channel quality. By supporting multiple channels and by introducing periodic variations into the channels in various embodiments, the time before a WT encounters a channel with good or acceptable channel conditions is minimized even if the WT does not change location. Multiple antennas are used at the BS to support numerous channels simultaneously, e.g., by controlling antenna patterns.
摘要:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
摘要:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
摘要:
Methods and apparatus for providing channel diversity to wireless terminals (WTs) in a manner that reduces the latency between the time a WT encounters satisfactory channel conditions are described. A plurality of communications channels with different physical characteristics are maintained in a cell by a base station (BS). Each WT monitors multiple channels and maintains multiple channel estimates at the same time so that rapid switching between channels is possible. Channel quality information is conveyed from each WT to the BS. The WT or BS selects a channel based on the measured channel quality. By supporting multiple channels and by introducing periodic variations into the channels in various embodiments, the time before a WT encounters a channel with good or acceptable channel conditions is minimized even if the WT does not change location. Multiple antennas are used at the BS to support numerous channels simultaneously, e.g., by controlling antenna patterns.
摘要:
Transmit and/or receive diversity is achieved using multiple antennas. In some embodiments, a single transmitter chain within a wireless terminal is coupled over time to a plurality of transmit antennas. At any given time, a controllable switching module couples the single transmitter chain to one the plurality of transmit antennas. Over time, the switching module couples the output signals from the single transmitter chain to different transmit antennas. Switching decisions are based upon predetermined information, dwell information, and/or channel condition feedback information. Switching is performed on some dwell and/or channel estimation boundaries. In some OFDM embodiments, each of multiple transmitter chains is coupled respectively to a different transmit antenna. Information to be transmitted is mapped to a plurality of tones. Different subsets of tones are formed for and transmitted through different transmit chain/antenna sets simultaneously. The balance of tones allocated to the subsets for each antenna are changed as a function of predetermined information, dwell information, and/or channel condition feedback information.
摘要:
A wireless terminal receives and measures broadcast reference signals, e.g., beacon and/or pilot signals, transmitted from a plurality of base station attachment points. The wireless terminal monitors for and attempts to recover broadcast loading factor information corresponding to attachment points. The wireless terminal generates and transmits an interference report to a current attachment point, the report based on the results of a measured received reference signal from the current attachment point, a measured received reference signal from each of one or more different attachment points, and uplink loading factor information. In the absence of a successfully recovered broadcast uplink loading factor corresponding to an attachment point, the wireless terminal uses a default value for that loading factor. Generated interference reports are based on beacon signal measurements and uplink loading factors, pilot signal measurements and uplink loading factors, or a mixture of beacon and pilot signal measurements and uplink loading factors.