摘要:
The invention presents a new method to prepare biomedical polyurethanes with high tensile and tear strengths. Such polyurethanes are especially interesting for making foams thereof, e.g. as meniscus implants. A new method, applicable to the biomedical polyurethanes, has been found to make such foams, that can be used as scaffolds. This method is based on salt leaching and phase separation.
摘要:
The present invention relates to a polyacylurethane having the following general formula (I) and a process for the preparation of such polyacylurethane. Preferred embodiments of the polyacylurethanes according to the invention have elastomeric properties. The polyacylurethanes can suitable be used in biodegradable, biocompatible and/or biomedical devices.
摘要:
The present invention relates to a polyacylurethane having the following general formula (I) and a process for the preparation of such polyacylurethane. Preferred embodiments of the polyacylurethanes according to the invention have elastomeric properties. The polyacylurethanes can suitable be used in biodegradable, biocompatible and/or biomedical devices.
摘要:
Method and system for measuring an angle between a first member and a second member under dynamic conditions is provided. A first and second acceleration sensor and an angle measuring device (goniometer) are connected to the first and second member. Under dynamic and static conditions, the angle (α) is measured by the goniometer. Under static conditions, the inclination angle of the first member is measured using the first acceleration sensor and the inclination angle of the second member using the second acceleration sensor and the angle (α′) between the first and second members is calculated. Then the deviation is calculated between the angle (α) and the angle (α′). An error correction factor is calculated from the deviation between both angles (α,α′). The error correction factor is applied to future and/or previous measurements of the angle (α) between the first and second member done by the goniometer.
摘要:
The present invention relates to “grafting to” methods of modifying materials surfaces with high-density polymer brushes. A method of the present invention comprises contacting in succession or simultaneously an activated material surface, a solution of a polymeric material having a polymeric backbone with pendant reactive moieties, and a melt of brush-forming terminally-functionalized polymer chains, in order to allow a covalent bonding reaction to occur between surface and polymers, wherein upon completion of the reaction, the polymeric material forms a layer between the material surface and the brush polymer chains.
摘要:
Method and system for measuring an angle between a first member and a second member under dynamic conditions is provided. A first and second acceleration sensor and an angle measuring device (goniometer) are connected to the first and second member. Under dynamic and static conditions, the angle (α) is measured by the goniometer. Under static conditions, the inclination angle of the first member is measured using the first acceleration sensor and the inclination angle of the second member using the second acceleration sensor and the angle (α′) between the first and second members is calculated. Then the deviation is calculated between the angle (α) and the angle (α′). An error correction factor is calculated from the deviation between both angles (α,α′). The error correction factor is applied to future and/or previous measurements of the angle (α) between the first and second member done by the goniometer
摘要:
The present invention relates to “grafting to” methods of modifying materials surfaces with high-density polymer brushes. A method of the present invention comprises contacting in succession or simultaneously an activated material surface, a solution of a polymeric material having a polymeric backbone with pendant reactive moieties, and a melt of brush-forming terminally-functionalized polymer chains, in order to allow a covalent bonding reaction to occur between surface and polymers, wherein upon completion of the reaction, the polymeric material forms a layer between the material surface and the brush polymer chains.