Method and apparatus for computer-supported generation of at least one artificial training data vector for a neural network
    1.
    发明授权
    Method and apparatus for computer-supported generation of at least one artificial training data vector for a neural network 失效
    用于计算机支持的用于神经网络的至少一个人造训练数据矢量生成的方法和装置

    公开(公告)号:US06282529B1

    公开(公告)日:2001-08-28

    申请号:US09254298

    申请日:1999-03-03

    IPC分类号: G06N302

    CPC分类号: G06N3/08 G06F19/00

    摘要: A method and apparatus for computer-supported generation of at least one artificial training data vector for a neural network is provided wherein a residual error is determined after a training of a neural network has occurred. A backward error is then determined from the residual error. Artificial training data vectors are generated from a statistical random process that is based on a statistical distribution, such that the respective backward error for an input of the neural network is taken into consideration.

    摘要翻译: 提供了一种用于计算机支持地生成用于神经网络的人造训练数据向量的方法和装置,其中在发生神经网络的训练之后确定残差。 然后从剩余误差确定后向误差。 从基于统计分布的统计随机过程生成人造训练数据向量,使得考虑到神经网络的输入的相应的后向误差。

    Method for optimizing a set of fuzzy rules using a computer
    2.
    发明授权
    Method for optimizing a set of fuzzy rules using a computer 失效
    使用计算机优化一组模糊规则的方法

    公开(公告)号:US06317730B1

    公开(公告)日:2001-11-13

    申请号:US09194263

    申请日:1998-11-23

    IPC分类号: G06F1518

    CPC分类号: G06N3/0436 G06N7/046

    摘要: A set of fuzzy rules (FR) is mapped onto a neural network (NN) (501). The neural network (NN) is trained (502), and weights (wi) and/or neurons (NE) of the neural network (NN) are pruned or grown (503). A new neural network (NNN) formed in this way is mapped onto a new fuzzy rule set (NFR) (504).

    摘要翻译: 一组模糊规则(FR)被映射到神经网络(NN)(501)上。 神经网络(NN)被训练(502),神经网络(NN)的权重(wi)和/或神经元(NE)被修剪或生长(503)。 以这种方式形成的新神经网络(NNN)映射到新的模糊规则集(NFR)(504)。

    ASSEMBLY OF INTERCONNECTED COMPUTING ELEMENTS, METHOD FOR COMPUTER-ASSISTED DETERMINATION OF A DYNAMICS WHICH IS THE BASE OF A DYNAMIC PROCESS, AND METHOD FOR COMPUTER-ASSISTED TRAINING OF AN ASSEMBLY OF INTERCONNECTED ELEMENTS
    3.
    发明授权
    ASSEMBLY OF INTERCONNECTED COMPUTING ELEMENTS, METHOD FOR COMPUTER-ASSISTED DETERMINATION OF A DYNAMICS WHICH IS THE BASE OF A DYNAMIC PROCESS, AND METHOD FOR COMPUTER-ASSISTED TRAINING OF AN ASSEMBLY OF INTERCONNECTED ELEMENTS 失效
    互连计算单元的组合,用于计算机辅助确定作为动态过程基础的动力学的方法以及用于计算机辅助训练组合互连元件的方法

    公开(公告)号:US06493691B1

    公开(公告)日:2002-12-10

    申请号:US09529195

    申请日:2000-04-07

    IPC分类号: G06N302

    CPC分类号: G06N3/049

    摘要: An input signal is transformed into a predetermined space. Transformation computer elements are connected to one another such that transformed signals can be taken at the transformation computer elements, whereby at least three transformed signals relate to respectively successive points in time. Composite computer elements are respectively connected to two transformation computer elements. Further, a first output computer element is provided at which an output signal that describes a system status at a point in time can be taken. The first output computer element is connected to the transformation computer elements. Further, a second output computer element is provided that is connected to the composite computer elements and given whose employment a predetermined condition can be taken into consideration when training the arrangement.

    摘要翻译: 输入信号被转换成预定的空间。 变换计算机元件彼此连接,使得转换的信号可以在转换计算机元件处获取,由此至少三个变换的信号分别与时间上相连。 复合计算机元件分别连接到两个转换计算机元件。 此外,提供第一输出计算机元件,在该第一输出计算机元件处可以采用描述在某个时间点的系统状态的输出信号。 第一个输出计算机元件连接到转换计算机元件。 此外,提供第二输出计算机元件,其连接到复合计算机元件并给予其在训练该布置时可以考虑使用预定条件。

    System and method for training and using interconnected computation elements to determine a dynamic response on which a dynamic process is based
    4.
    发明授权
    System and method for training and using interconnected computation elements to determine a dynamic response on which a dynamic process is based 失效
    用于训练和使用互连的计算元素以确定基于动态过程的动态响应的系统和方法

    公开(公告)号:US06728691B1

    公开(公告)日:2004-04-27

    申请号:US09914850

    申请日:2001-09-04

    IPC分类号: G06F1518

    CPC分类号: G06N3/049

    摘要: Computation elements are connected to one another with a first subsystem having a first input computation element, to which time series values, which each describe one state of a system in a first state space at a time, can be supplied. The first input computation element is connected to a first intermediate computation element, by which a state of the system can be described in a second state space at a time. In a second subsystem a second intermediate computation element, by which a state of the system can be described in the second state space at a time, is connected to a first output computation element, on which a first output signal can be tapped off. In a third subsystem a third intermediate computation element, by which a state of the system can be described in the second state space at a time, is connected to a second output computation element, on which a second output signal can be tapped off. The first subsystem, the second subsystem and the third subsystem are each connected to one another by a coupling between the intermediate computation elements. Weights, which are each associated with one connection between two intermediate computation elements are equal to one another, and weights which are each associated with a connection between an intermediate computation element and an output computation element are equal to one another.

    摘要翻译: 计算元件通过具有第一输入计算元件的第一子系统相互连接,每个时间序列值描述一次在第一状态空间中的系统的一个状态。 第一输入计算元件连接到第一中间计算元件,通过该第一中间计算元件,可以一次在第二状态空间中描述系统的状态。 在第二子系统中,通过该第二中间计算元件连接到第一输出计算元件,第一中间计算元件可以一次在第二状态空间中描述系统的状态,第一输出计算元件可以在其上分离第一输出信号。 在第三子系统中,第三中间计算元件连接到第二输出计算元件,第二中间计算元件可以在第二输出计算元件上将第二输出信号分配给该第二中间计算元件。 第一子系统,第二子系统和第三子系统各自通过中间计算元件之间的耦合彼此连接。 每个与两个中间计算元件之间的一个连接相关联的权重彼此相等,并且每个与中间计算元件和输出计算元件之间的连接相关联的权重彼此相等。

    Modeling Effectiveness of Verum
    5.
    发明申请
    Modeling Effectiveness of Verum 审中-公开
    验证的建模效果

    公开(公告)号:US20150134311A1

    公开(公告)日:2015-05-14

    申请号:US14075946

    申请日:2013-11-08

    IPC分类号: G06F19/00

    CPC分类号: G16H50/50 G16H10/20

    摘要: Modeling effectiveness of a verum includes dividing a group of patients into a placebo group and a verum group, defining a plurality of characteristics of the group of patients, and generating a model for the placebo group based on the plurality of characteristics. The method also includes generating a model for the verum group based on the plurality of characteristics, and isolating a placebo effect in the verum group in order to determine a pure verum effect.

    摘要翻译: 正确的建模功能包括将一组患者分成安慰剂组和正常组,定义患者组的多个特征,并且基于多个特征生成安慰剂组的模型。 该方法还包括基于多个特征为verum组生成模型,并且在verum组中分离安慰剂效应以便确定纯verum效应。

    Method for determination of weights, suitable for elimination, of a neural network using a computer
    7.
    发明授权
    Method for determination of weights, suitable for elimination, of a neural network using a computer 有权
    使用计算机确定适合于消除神经网络的权重的方法

    公开(公告)号:US06311172B1

    公开(公告)日:2001-10-30

    申请号:US09155197

    申请日:1998-09-23

    IPC分类号: G06F1518

    CPC分类号: G06N3/08

    摘要: The training phase of a neural network NN is stopped before an error function, which is to be minimized in the training phase, reaches a minimum (301). A first variable (EG) is defined using, for example, the optimal brain damage method or the optimal brain surgeon method, on the assumption that the error function is at the minimum. Furthermore, a second variable (ZG) is determined which provides an indication of the manner in which the value of the error function varies when a weight (wi) is removed from the neural network (NN). The first variable (EG) and the second variable (ZG) are used to classify the weight (wi) as being suitable or unsuitable for removal from the neural network (NN).

    摘要翻译: 在训练阶段要最小化的误差函数达到最小(301)之前,停止神经网络NN的训练阶段。 假设误差函数为最小,使用例如最佳脑损伤方法或最佳脑外科医生方法来定义第一变量(EG)。 此外,确定第二变量(ZG),当从神经网络(NN)移除权重(wi)时,提供误差函数的值变化的方式的指示。 第一变量(EG)和第二变量(ZG)用于将权重(wi)分类为适合于或不适合于从神经网络(NN)中移除。

    Method for the computer-aided learning of a recurrent neural network for modeling a dynamic system
    8.
    发明授权
    Method for the computer-aided learning of a recurrent neural network for modeling a dynamic system 有权
    用于建模动态系统的循环神经网络的计算机辅助学习方法

    公开(公告)号:US09235800B2

    公开(公告)日:2016-01-12

    申请号:US13640543

    申请日:2011-04-12

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: A method for the computer-aided learning of a recurrent neural network for modeling a dynamic system which is characterized at respective times by an observable vector with one or more observables as entries is provided. The neural network includes both a causal network with a flow of information that is directed forwards in time and a retro-causal network with a flow of information which is directed backwards in time. The states of the dynamic system are characterized by first state vectors in the causal network and by second state vectors in the retro-causal network, wherein the state vectors each contain observables for the dynamic system and also hidden states of the dynamic system. Both networks are linked to one another by a combination of the observables from the relevant first and second state vectors and are learned on the basis of training date including known observables vectors.

    摘要翻译: 提供了一种用于对动态系统进行建模的循环神经网络的计算机辅助学习的方法,该动态系统在各自的时间由具有一个或多个可观察值的可观察向量表征为条目。 神经网络包括具有时间向前指向的信息流的因果网络和具有时间向后指向的信息流的复原因果网络。 动态系统的状态由因果网络中的第一状态向量和复原因果网络中的第二状态向量表征,其中状态向量每个都包含动态系统的可观察值,以及动态系统的隐藏状态。 两个网络通过相关的第一和第二状态向量的可观察的组合彼此相关联,并且基于包括已知的可观察向量的训练日期来学习。

    METHOD FOR THE COMPUTER-AIDED LEARNING OF A RECURRENT NEURAL NETWORK FOR MODELING A DYNAMIC SYSTEM
    10.
    发明申请
    METHOD FOR THE COMPUTER-AIDED LEARNING OF A RECURRENT NEURAL NETWORK FOR MODELING A DYNAMIC SYSTEM 有权
    用于建模动态系统的复现神经网络的计算机辅助学习方法

    公开(公告)号:US20130204815A1

    公开(公告)日:2013-08-08

    申请号:US13640543

    申请日:2011-04-12

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: A method for the computer-aided learning of a recurrent neural network for modeling a dynamic system which is characterized at respective times by an observable vector with one or more observables as entries is provided. The neural network includes both a causal network with a flow of information that is directed forwards in time and a retro-causal network with a flow of information which is directed backwards in time. The states of the dynamic system are characterized by first state vectors in the causal network and by second state vectors in the retro-causal network, wherein the state vectors each contain observables for the dynamic system and also hidden states of the dynamic system. Both networks are linked to one another by a combination of the observables from the relevant first and second state vectors and are learned on the basis of training date including known observables vectors.

    摘要翻译: 提供了一种用于对动态系统进行建模的循环神经网络的计算机辅助学习的方法,该动态系统在各自的时间由具有一个或多个可观察值的可观察向量表征为条目。 神经网络包括具有时间向前指向的信息流的因果网络和具有时间向后指向的信息流的复原因果网络。 动态系统的状态由因果网络中的第一状态向量和复原因果网络中的第二状态向量表征,其中状态向量每个都包含动态系统的可观察值,以及动态系统的隐藏状态。 两个网络通过相关的第一和第二状态向量的可观察的组合彼此相关联,并且基于包括已知的可观察向量的训练日期来学习。