摘要:
A method for the computer-assisted control and/or regulation of a technical system is provided. The method includes two steps, namely learning the dynamics of a technical system using historical data based on a recurrent neuronal network, and the subsequent learning of an optimum regulation by coupling the recurrent neuronal network to another neuronal network. The method can be used with any technical system in order to control the system in an optimum computer-assisted manner. For example, the method can be used in the control of a gas turbine.
摘要:
A method for the computer-assisted control and/or regulation of a technical system is provided. The method is used to efficiently reduce a high-dimensional state space describing the technical system to a smaller dimension. The reduction of the state space is performed using an artificial recurrent neuronal network. In addition, the reduction of the state space enables conventional learning methods, which are only designed for small dimensions of state spaces, to be applied to complex technical systems with an initially large state space, wherein the conventional learning methods are performed in the reduced state space. The method can be used with any technical system, especially gas turbines.
摘要:
A robotic controller using schemata, the schemata being a set of parameterized sequences of motor commands in order to make a robot to achieve a set goal, the parameters of the sequences being gained from the state variables of the robotic controller, a robotic controller comprising an interface for supplying sensory input to the robotic controller. A schemata state memory (1) structure supplied with either input from a schemata recognition module (4) or input from an inverse model module (2) or combinations of them. An inverse model module (2) for generating motor commands based on state variables and stored schemata, a forward model module (3) for predicting state variables based on state variables and stored schemata, and a schemata recognition module (4) for selecting a schemata based on supplied state variables of the robot controlled by the robotic controller.
摘要:
The present invention relates to a control algorithm constructing device that constructs a control algorithm controlling the motion of a robot, and a controller that controls the motion of the robot in accordance with the constructed control algorithm, with the purpose of reducing the cost and time taken to create the control algorithm as compared with the conventional method such as an MZP method to solve a mechanical equation, in which the control algorithm is constructed by a recurrent neural network (RNN) including a neuron generating an output with an analogue lag with respect to an input, the coefficients of the RNN are determined in succession from the term of lower degree to the term of higher degree.
摘要:
Aspects of the present disclosure provide systems, methods, and computer-readable storage media that support mechanisms for generating a feasible assembly plan for a product based on data analytics. In aspects, information on components of a product is obtained from one or more product models (e.g., a three-dimensional (3D) computer aided design (CAD) model) that define the individual components of the product. The individual component information may be used to represent the assembly of the product as an assembly graph, in which each node of the assembly graph represents one of the components of the product to be assembled. The assembly graph is passed through a set of data analytics modules to generate the feasible assembly plan, or assembly sequence, as a series of sequential contact predictions, wherein each contact prediction identifies a component to be connected to one or more other components of the product.
摘要:
A method for the computer-assisted control and/or regulation of a technical system is provided. The method is used to efficiently reduce a high-dimensional state space describing the technical system to a smaller dimension. The reduction of the state space is performed using an artificial recurrent neuronal network. In addition, the reduction of the state space enables conventional learning methods, which are only designed for small dimensions of state spaces, to be applied to complex technical systems with an initially large state space, wherein the conventional learning methods are performed in the reduced state space. The method can be used with any technical system, especially gas turbines.
摘要:
Robots and robotic systems and methods can employ artificial neural networks (ANNs) to significantly improve performance. The ANNs can operate alternatingly in forward and backward directions in interleaved fashion. The ANNs can employ visible units and hidden units. Various objective functions can be optimized. Robots and robotic systems and methods can execute applications including a plurality of agents in a distributed system, for instance with a number of hosts executing respective agents, at least some of the agents in communications with one another. The hosts can execute agents in response to occurrence of defined events or trigger expressions, and can operate with a maximum latency guarantee and/or data quality guarantee.
摘要:
A method for the computer-assisted control and/or regulation of a technical system is provided. The method includes two steps, namely modeling the dynamic behavior of the technical system with a recurrent neural network using training data, the recurrent neural network includes states and actions determined using a simulation model at different times and learning an action selection rule by the recurrent neural network to a further neural network. The method can be used with any technical system in order to control the system in an optimum computer-assisted manner. For example, the method can be used in the control of a gas turbine.
摘要:
A robotic controller using schemata, the schemata being a set of parameterized sequences of motor commands in order to make a robot to achieve a set goal, the parameters of the sequences being gained from the state variables of the robotic controller, a robotic controller comprising an interface for supplying sensory input to the robotic controller. A schemata state memory (1) structure supplied with either input from a schemata recognition module (4) or input from an inverse model module (2) or combinations of them. An inverse model module (2) for generating motor commands based on state variables and stored schemata, a forward model module (3) for predicting state variables based on state variables and stored schemata, and a schemata recognition module (4) for selecting a schemata based on supplied state variables of the robot controlled by the robotic controller.
摘要:
A control algorithm constructing device that constructs a control algorithm controlling the motion of a robot, and a controller that controls the motion of the robot in accordance with the constructed control algorithm, with the purpose of reducing the cost and time taken to create the control algorithm as compared with the conventional method such as an MZP method to solve a mechanical equation, in which the control algorithm is constructed by a recurrent neural network (RNN) including a neuron generating an output with an analogue lag with respect to an input, the coefficients of the RNN are determined in succession from the term of lower degree to the term of higher degree.