Method for the computer-assisted control and/or regulation of a technical system
    1.
    发明申请
    Method for the computer-assisted control and/or regulation of a technical system 失效
    计算机辅助控制和/或调节技术系统的方法

    公开(公告)号:US20100094788A1

    公开(公告)日:2010-04-15

    申请号:US12522040

    申请日:2007-12-19

    IPC分类号: G06N3/08 G05B13/04

    摘要: A method for the computer-assisted control and/or regulation of a technical system is provided. The method includes two steps, namely learning the dynamics of a technical system using historical data based on a recurrent neuronal network, and the subsequent learning of an optimum regulation by coupling the recurrent neuronal network to another neuronal network. The method can be used with any technical system in order to control the system in an optimum computer-assisted manner. For example, the method can be used in the control of a gas turbine.

    摘要翻译: 提供了一种用于计算机辅助控制和/或调节技术系统的方法。 该方法包括两个步骤,即使用基于复发性神经元网络的历史数据来学习技术系统的动力学,以及随后通过将复发性神经元网络耦合到另一神经元网络来学习最佳调节。 该方法可以与任何技术系统一起使用,以便以最佳的计算机辅助方式控制系统。 例如,该方法可用于燃气轮机的控制。

    METHOD FOR THE COMPUTER-ASSISTED CONTROL AND/OR REGULATION OF A TECHNICAL SYSTEM
    2.
    发明申请
    METHOD FOR THE COMPUTER-ASSISTED CONTROL AND/OR REGULATION OF A TECHNICAL SYSTEM 有权
    用于计算机辅助控制和/或调节技术系统的方法

    公开(公告)号:US20100049339A1

    公开(公告)日:2010-02-25

    申请号:US12521920

    申请日:2007-12-19

    IPC分类号: G05B13/04 G06N3/08

    摘要: A method for the computer-assisted control and/or regulation of a technical system is provided. The method is used to efficiently reduce a high-dimensional state space describing the technical system to a smaller dimension. The reduction of the state space is performed using an artificial recurrent neuronal network. In addition, the reduction of the state space enables conventional learning methods, which are only designed for small dimensions of state spaces, to be applied to complex technical systems with an initially large state space, wherein the conventional learning methods are performed in the reduced state space. The method can be used with any technical system, especially gas turbines.

    摘要翻译: 提供了一种用于计算机辅助控制和/或调节技术系统的方法。 该方法用于将描述技术系统的高维状态空间有效地降低到更小的维度。 使用人工复发神经元网络来执行状态空间的减少。 此外,状态空间的减少使得仅能够设计用于状态空间的小尺寸的常规学习方法被应用于具有最初大的状态空间的复杂技术系统,其中传统的学习方法以简化的状态执行 空间。 该方法可用于任何技术系统,特别是燃气轮机。

    Learning and use of schemata in robotic devices
    3.
    发明授权
    Learning and use of schemata in robotic devices 有权
    学习和使用机器人设备中的模式

    公开(公告)号:US08332070B2

    公开(公告)日:2012-12-11

    申请号:US12619840

    申请日:2009-11-17

    摘要: A robotic controller using schemata, the schemata being a set of parameterized sequences of motor commands in order to make a robot to achieve a set goal, the parameters of the sequences being gained from the state variables of the robotic controller, a robotic controller comprising an interface for supplying sensory input to the robotic controller. A schemata state memory (1) structure supplied with either input from a schemata recognition module (4) or input from an inverse model module (2) or combinations of them. An inverse model module (2) for generating motor commands based on state variables and stored schemata, a forward model module (3) for predicting state variables based on state variables and stored schemata, and a schemata recognition module (4) for selecting a schemata based on supplied state variables of the robot controlled by the robotic controller.

    摘要翻译: 使用模式的机器人控制器,所述模式是电机命令的一组参数化序列,以使机器人实现设定目标,所述序列的参数从所述机器人控制器的状态变量获得,所述机器人控制器包括: 用于向机器人控制器提供感觉输入的界面。 提供有来自模式识别模块(4)的输入或反模型模块(2)的输入或它们的组合的模式状态存储器(1)结构。 一种用于基于状态变量和存储模式生成电动机命令的逆模型模块(2),用于基于状态变量和存储模式预测状态变量的前向模型模块(3),以及用于选择模式的模式识别模块(4) 基于由机器人控制器控制的机器的提供的状态变量。

    Robot control algorithm constructing apparatus, robot control algorithm constructing program storage medium, robot controller, robot control program storage medium, and robot
    4.
    发明申请
    Robot control algorithm constructing apparatus, robot control algorithm constructing program storage medium, robot controller, robot control program storage medium, and robot 失效
    机器人控制算法构建装置,构建程序存储介质的机器人控制算法,机器人控制器,机器人控制程序存储介质和机器人

    公开(公告)号:US20050119791A1

    公开(公告)日:2005-06-02

    申请号:US11028311

    申请日:2005-01-04

    申请人: Fumio Nagashima

    发明人: Fumio Nagashima

    摘要: The present invention relates to a control algorithm constructing device that constructs a control algorithm controlling the motion of a robot, and a controller that controls the motion of the robot in accordance with the constructed control algorithm, with the purpose of reducing the cost and time taken to create the control algorithm as compared with the conventional method such as an MZP method to solve a mechanical equation, in which the control algorithm is constructed by a recurrent neural network (RNN) including a neuron generating an output with an analogue lag with respect to an input, the coefficients of the RNN are determined in succession from the term of lower degree to the term of higher degree.

    摘要翻译: 本发明涉及一种构建控制机器人运动的控制算法的控制算法构造装置,以及根据构造的控制算法来控制机器人运动的控制器,其目的是降低成本和时间 与诸如MZP方法的常规方法相比以创建控制算法来解决机械方程,其中控制算法由包括神经元的复现神经网络(RNN)构成,所述神经网络产生相对于模拟滞后的输出 输入,RNN的系数从较低程度到较高程度的术语连续确定。

    THREE-DIMENSION (3D) ASSEMBLY PRODUCT PLANNING

    公开(公告)号:US20230195088A1

    公开(公告)日:2023-06-22

    申请号:US17556878

    申请日:2021-12-20

    摘要: Aspects of the present disclosure provide systems, methods, and computer-readable storage media that support mechanisms for generating a feasible assembly plan for a product based on data analytics. In aspects, information on components of a product is obtained from one or more product models (e.g., a three-dimensional (3D) computer aided design (CAD) model) that define the individual components of the product. The individual component information may be used to represent the assembly of the product as an assembly graph, in which each node of the assembly graph represents one of the components of the product to be assembled. The assembly graph is passed through a set of data analytics modules to generate the feasible assembly plan, or assembly sequence, as a series of sequential contact predictions, wherein each contact prediction identifies a component to be connected to one or more other components of the product.

    Method for the computer-assisted control and/or regulation of a technical system
    6.
    发明授权
    Method for the computer-assisted control and/or regulation of a technical system 有权
    计算机辅助控制和/或调节技术系统的方法

    公开(公告)号:US08566264B2

    公开(公告)日:2013-10-22

    申请号:US12521920

    申请日:2007-12-19

    摘要: A method for the computer-assisted control and/or regulation of a technical system is provided. The method is used to efficiently reduce a high-dimensional state space describing the technical system to a smaller dimension. The reduction of the state space is performed using an artificial recurrent neuronal network. In addition, the reduction of the state space enables conventional learning methods, which are only designed for small dimensions of state spaces, to be applied to complex technical systems with an initially large state space, wherein the conventional learning methods are performed in the reduced state space. The method can be used with any technical system, especially gas turbines.

    摘要翻译: 提供了一种用于计算机辅助控制和/或调节技术系统的方法。 该方法用于将描述技术系统的高维状态空间有效地降低到更小的维度。 使用人工复发神经元网络来执行状态空间的减少。 此外,状态空间的减少使得仅能够设计用于状态空间的小尺寸的常规学习方法被应用于具有最初大的状态空间的复杂技术系统,其中传统的学习方法以简化的状态执行 空间。 该方法可用于任何技术系统,特别是燃气轮机。

    SYSTEMS, DEVICES, AND METHODS FOR DISTRIBUTED ARTIFICIAL NEURAL NETWORK COMPUTATION

    公开(公告)号:US20170140259A1

    公开(公告)日:2017-05-18

    申请号:US15353492

    申请日:2016-11-16

    IPC分类号: G06N3/04 B25J9/16

    摘要: Robots and robotic systems and methods can employ artificial neural networks (ANNs) to significantly improve performance. The ANNs can operate alternatingly in forward and backward directions in interleaved fashion. The ANNs can employ visible units and hidden units. Various objective functions can be optimized. Robots and robotic systems and methods can execute applications including a plurality of agents in a distributed system, for instance with a number of hosts executing respective agents, at least some of the agents in communications with one another. The hosts can execute agents in response to occurrence of defined events or trigger expressions, and can operate with a maximum latency guarantee and/or data quality guarantee.

    LEARNING AND USE OF SCHEMATA IN ROBOTIC DEVICES
    9.
    发明申请
    LEARNING AND USE OF SCHEMATA IN ROBOTIC DEVICES 有权
    在机器人设备中学习和使用SCHEMATA

    公开(公告)号:US20100249999A1

    公开(公告)日:2010-09-30

    申请号:US12619840

    申请日:2009-11-17

    IPC分类号: B25J9/00 B25J19/02 G06N3/02

    摘要: A robotic controller using schemata, the schemata being a set of parameterized sequences of motor commands in order to make a robot to achieve a set goal, the parameters of the sequences being gained from the state variables of the robotic controller, a robotic controller comprising an interface for supplying sensory input to the robotic controller. A schemata state memory (1) structure supplied with either input from a schemata recognition module (4) or input from an inverse model module (2) or combinations of them. An inverse model module (2) for generating motor commands based on state variables and stored schemata, a forward model module (3) for predicting state variables based on state variables and stored schemata, and a schemata recognition module (4) for selecting a schemata based on supplied state variables of the robot controlled by the robotic controller.

    摘要翻译: 使用模式的机器人控制器,所述模式是电机命令的一组参数化序列,以使机器人实现设定的目标,所述序列的参数从所述机器人控制器的状态变量获得,所述机器人控制器包括: 用于向机器人控制器提供感觉输入的界面。 提供有来自模式识别模块(4)的输入或反模型模块(2)的输入或它们的组合的模式状态存储器(1)结构。 一种用于基于状态变量和存储模式生成电动机命令的逆模型模块(2),用于基于状态变量和存储模式预测状态变量的前向模型模块(3),以及用于选择模式的模式识别模块(4) 基于由机器人控制器控制的机器的提供的状态变量。

    Robot control algorithm constructing apparatus
    10.
    发明授权
    Robot control algorithm constructing apparatus 失效
    机器人控制算法构建装置

    公开(公告)号:US07072741B2

    公开(公告)日:2006-07-04

    申请号:US11028311

    申请日:2005-01-04

    申请人: Fumio Nagashima

    发明人: Fumio Nagashima

    IPC分类号: G06F19/00

    摘要: A control algorithm constructing device that constructs a control algorithm controlling the motion of a robot, and a controller that controls the motion of the robot in accordance with the constructed control algorithm, with the purpose of reducing the cost and time taken to create the control algorithm as compared with the conventional method such as an MZP method to solve a mechanical equation, in which the control algorithm is constructed by a recurrent neural network (RNN) including a neuron generating an output with an analogue lag with respect to an input, the coefficients of the RNN are determined in succession from the term of lower degree to the term of higher degree.

    摘要翻译: 一种构成控制机器人运动的控制算法的控制算法构造装置,以及根据构成的控制算法来控制机器人运动的控制器,其目的在于降低创建控制算法所需的成本和时间 与用于求解机械方程的常规方法如MZP方法相比,其中控制算法由包括相对于输入产生具有模拟滞后的输出的神经元的循环神经网络(RNN)构成,系数 的RNN从较低程度到较高程度的术语连续确定。