摘要:
A method of and a system for spectral correction in multi-energy computed tomography are provided to correct reconstructed images, including high-energy CT images and Z (effective atomic number) images, for spectral variations, which include time variations on a scanner due to HVPS drift and scanner to scanner variations due to the beamline component differences. The method uses a copper filter mounted on the detector array for tracking the spectral changes. The method comprises: generating copper ratios; computing working air tables; calculating scales and offsets; and correcting high-energy CT images and Z images using calculated scales and offsets. The method further includes an off-line calibration procedure to generate necessary parameters for the online correction.
摘要:
A method of and a system for spectral correction in multi-energy computed tomography are provided to correct reconstructed images, including high-energy CT images and Z (effective atomic number) images, for spectral variations, which include time variations on a scanner due to HVPS drift and scanner to scanner variations due to the beamline component differences. The method uses a copper filter mounted on the detector array for tracking the spectral changes. The method comprises: generating copper ratios; computing working air tables; calculating scales and offsets; and correcting high-energy CT images and Z images using calculated scales and offsets. The method further includes an off-line calibration procedure to generate necessary parameters for the online correction.
摘要:
A method of and a system for computing Z (effective atomic number) images from projection data are provided, wherein the projections are acquired using at least two x-ray spectra for a set of scanned objects, including a set of low energy projections and a set of high energy projections; the method comprises decomposing the low energy projections and high energy projections into photoelectric projections, reconstructing the photoelectric projections into photoelectric images, reconstructing one of the two sets of projections into CT images, and computing Z images from the CT images and the photoelectric images with parameters obtained from a calibration procedure.
摘要:
A method of and a system for identifying objects using local distribution features from multi-energy CT images are provided. The multi-energy CT images include a CT image, which approximates density measurements of scanned objects, and a Z image, which approximates effective atomic number measurements of scanned objects. The local distribution features are first and second order statistics of the local distributions of the density and atomic number measurements of different portions of a segmented object. The local distributions are the magnitude images of the first order derivative of the CT image and the Z image. Each segmented object is also divided into different portions to provide geometrical information for discrimination. The method comprises preprocessing the CT and Z images, segmenting images into objects, computing local distributions of the CT and Z images, computing local distribution histograms, computing local distribution features from the said local distribution histograms, classifying objects based on the local distribution features.
摘要:
A method of and a system for destreaking the photoelectric image in multi-energy computed tomography are provided, wherein the photoelectric projections are generated from the projection data acquired using at least two x-ray spectra for scanned objects; wherein a neighboring scheme is provided; the method comprises computing the statistics including mean and standard deviation using the neighboring scheme; calculating an upper limit and a lower limit from the computed statistics; detecting outliers in the photoelectric projections using the upper and lower limits; and replacing values of outliers using the upper or lower limit.
摘要:
A method of and a system for identifying objects using histogram segment features from multi-energy CT images are provided. The multi-energy CT images include a CT image, which approximates density measurements of scanned objects, and a Z image, which approximates effective atomic number measurements of scanned objects. The method comprises: computing a density histogram for each potential threat object; smoothing the density histogram using a low-pass filter; identifying peaks in the smoothed density histogram; assigning a segment to each peak; computing histogram segment features for each segment; classifying each potential threat object into a threat or a non-threat using computed features.
摘要:
Method of and system for adaptive scatter correction in the absence of scatter detectors in multi-energy computed tomography are provided, wherein input projection data acquired using at least two x-ray spectra for scanned objects may include a set of low energy projections and a set of high energy projections; wherein a low-pass filter of variable size is provided; the method comprises estimating the size of the low-pass filter; computing amounts of scatter; and correcting both sets of projections for scatter. The estimation of low-pass filter size comprises thresholding high energy projections into binary projections; filtering the binary projections; finding the maximum of the filtered binary projections; calculating the low-pass filter size from the found maximum. The computation of amounts of scatter comprises exponentiating input projections; low-pass filtering the exponentiated projections with the estimated filter size; computing the amounts of scatter from the filtered projections.
摘要:
A method of and a system for computing Z (effective atomic number) images from projection data are provided, wherein the projections are acquired using at least two x-ray spectra for a set of scanned objects, including a set of low energy projections and a set of high energy projections; the method comprises decomposing the low energy projections and high energy projections into photoelectric projections, reconstructing the photoelectric projections into photoelectric images, reconstructing one of the two sets of projections into CT images, and computing Z images from the CT images and the photoelectric images with parameters obtained from a calibration procedure.
摘要:
A method of and a system for variable pitch CT scanning for baggage screening and variable pitch image reconstruction are disclosed. The method comprises decelerating conveyor belt speed when additional time is needed to render a decision on a complex bag; accelerating conveyor belt speed to its normal speed when decisions are reached on undecided bags; generating cone-beam projection data at variable scanning pitch corresponding to variable conveyor belt speed; computing a tilt angle and a distance offset for each tilted slice using the pitch values at which the cone-beam projection data is acquired for that tilted slice; generating fan-beam projection data for each tilted slice using the tilted angle and the distance offset; generating correction projection data to compensate for the error between the source trajectory and the tilted reconstruction plane; generating the corrected fan-beam projection data by adding the correction projection data to the fan-beam projection data; reconstructing tilted slices using the corrected fan-beam projection data; and interpolating the reconstructed tilted slices into axial slices.
摘要:
A method of and a system for identifying objects using histogram segment features from multi-energy CT images are provided. The multi-energy CT images include a CT image, which approximates density measurements of scanned objects, and a Z image, which approximates effective atomic number measurements of scanned objects. The method comprises: computing a density histogram for each potential threat object; smoothing the density histogram using a low-pass filter; identifying peaks in the smoothed density histogram; assigning a segment to each peak; computing histogram segment features for each segment; classifying each potential threat object into a threat or a non-threat using computed features.